【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),頂點坐標(biāo)為(1,n),與y軸的交點在(0,2)、(0,3)之間(包含端點),則下列結(jié)論: ①當(dāng)x>3時,y<0;②3a+b>0;③﹣1≤a≤﹣ ;④3≤n≤4中,
正確的是(

A.①②
B.③④
C.①④
D.①③

【答案】D
【解析】解:①∵拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),對稱軸直線是x=1, ∴該拋物線與x軸的另一個交點的坐標(biāo)是(3,0),
∴根據(jù)圖示知,當(dāng)x>3時,y<0.
故①正確;
②根據(jù)圖示知,拋物線開口方向向下,則a<0.
∵對稱軸x=﹣ =1,
∴b=﹣2a,
∴3a+b=3a﹣2a=a<0,即3a+b<0.
故②錯誤;
③∵拋物線與x軸的兩個交點坐標(biāo)分別是(﹣1,0),(3,0),
∴﹣1×3=﹣3,
=﹣3,則a=﹣
∵拋物線與y軸的交點在(0,2)、(0,3)之間(包含端點),
∴2≤c≤3,
∴﹣1≤﹣ ≤﹣ ,即﹣1≤a≤﹣
故③正確;
④根據(jù)題意知,a=﹣ ,﹣ =1,
∴b=﹣2a=
∴n=a+b+c= c.
∵2≤c≤3,
c≤4,即 ≤n≤4.
故④錯誤.
綜上所述,正確的說法有①③.
故選D.

【考點精析】利用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系對題目進行判斷即可得到答案,需要熟知二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標(biāo):(0,c).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,AD 是∠A 的外角平分線,P AD 上異于點 A 的任意一點,設(shè) PBmPCn,ABc,ACb,則 mn_____bc(填“>”“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠DAC是△ABC的一個外角. 實驗與操作:
根據(jù)要求進行尺規(guī)作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫作法)

(1)作∠DAC的平分線AM;
(2)作線段AC的垂直平分線,與AM交于點F,與BC邊交于點E,連接AE,CF.猜想并證明: 判斷四邊形AECF的形狀并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在以O(shè)為原點的平面直角坐標(biāo)系中,點A的坐標(biāo)為(0,2),點P(s,t)在拋物線y= x2+1上,點P到x軸的距離記為m,PA=n.

(1)若s=4,分別求出m、n的值,并比較m與n的大小關(guān)系;
(2)若點P是該拋物線上的一個動點,則(1)中m與n的大小關(guān)系是否仍成立?請說明理由;
(3)如圖2,過點P的直線y=kx(k≠0)與拋物線交于另一點Q連接PA、QA,是否存在k使得PA=2QA?若存在,請求出k的值;若不存在,請舉例說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】復(fù)習(xí)課中,教師給出關(guān)于x的函數(shù)y=2kx2﹣(4k+1)x﹣k+1(k是實數(shù)).
教師:請獨立思考,并把探索發(fā)現(xiàn)的與該函數(shù)有關(guān)的結(jié)論(性質(zhì))寫到黑板上.
學(xué)生思考后,黑板上出現(xiàn)了一些結(jié)論.教師作為活動一員,又補充一些結(jié)論,并從中選出以下四條:
①存在函數(shù),其圖象經(jīng)過(1,0)點;
②函數(shù)圖象與坐標(biāo)軸總有三個不同的交點;
③當(dāng)x>1時,不是y隨x的增大而增大就是y隨x的增大而減;
④若函數(shù)有最大值,則最大值必為正數(shù),若函數(shù)有最小值,則最小值必為負(fù)數(shù).
教師:請你分別判斷四條結(jié)論的真假,并給出理由.最后簡單寫出解決問題時所用的數(shù)學(xué)方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+6分別與x軸、y軸交于點E,F(xiàn),已知點E的坐標(biāo)為(﹣8,0),點A的坐標(biāo)為(﹣6,0).

(1)求k的值;

(2)若點P(x,y)是該直線上的一個動點,且在第二象限內(nèi)運動,試寫出OPA的面積S關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.

(3)探究:當(dāng)點P運動到什么位置時,OPA的面積為,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀,后解答:

(1)由根式的性質(zhì)計算下列式子得:

=3,②,③,④=5,⑤=0.

由上述計算,請寫出的結(jié)果(a為任意實數(shù)).

(2)利用(1)中的結(jié)論,計算下列問題的結(jié)果:

;

化簡:(x<2).

(3)應(yīng)用:

=3,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一節(jié),小麗獨自一人去老家玩,家住在車站附近的姑姑到車站去接小麗.因為擔(dān)心小麗下車后找不到路,姑姑一路小跑來到車站,結(jié)果客車晚點,休息一陣后,姑姑接到小麗,和小麗一起慢慢的走回了家.下列圖象中,能反映以上過程中小麗姑姑離家的距離s與時間t的關(guān)系的大致圖象是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校體育組為了了解學(xué)生喜歡的體育項目,從全校同學(xué)中隨機抽取了若干名同學(xué)進行調(diào)查,每位同學(xué)從乒乓球、籃球、羽毛球、排球、跳繩中選擇一項最喜歡的項目,并將調(diào)查的結(jié)果繪制成如下的兩幅統(tǒng)計圖.根據(jù)以上統(tǒng)計圖,解答下列問題:
(1)這次被調(diào)查的共有多少名同學(xué)?并補全條形統(tǒng)計圖.
(2)若全校有1200名同學(xué),估計全校最喜歡籃球和排球的共有多少名同學(xué)?

查看答案和解析>>

同步練習(xí)冊答案