【題目】如圖,二次函數(shù)y=ax2+bx+c的對(duì)稱軸是直線x=1,且經(jīng)過點(diǎn)(﹣1,0),則下列結(jié)論:①abc<0;②2a﹣b=0;③a<﹣ ;④若方程ax2+bx+c﹣2=0的兩個(gè)根為x1和x2,則(x1+1)(x2﹣3)<0,正確的有( )個(gè).
A. 1B. 2C. 3D. 4
【答案】C
【解析】
由圖象可知,a<0,b>0,c>0,-=1,因此abc<0,-b=2a,2a-b=4a≠0,故①正確,②錯(cuò)誤;當(dāng)x=-1時(shí),a-b+c=0,3a+c=0,c=-3a>2,a<-,故③正確;由對(duì)稱軸直線x=1,拋物線與x軸左側(cè)交點(diǎn)(-1,0),可知拋物線與x軸另一個(gè)交點(diǎn)(3,0),由圖象可知,y=2時(shí),x1<-1,x2>3,所以x1+1<0,x2-3>0,因此(x1+1)(x2-3)<0.
由圖象可知,a<0,b>0,c>0,-=1,
∴abc<0,-b=2a,2a-b=4a≠0,故①正確,②錯(cuò)誤;
x=-1時(shí),a-b+c=0,3a+c=0,c=-3a>2,a<-,故③正確;
由對(duì)稱軸直線x=1,拋物線與x軸左側(cè)交點(diǎn)(-1,0),可知拋物線與x軸另一個(gè)交點(diǎn)(3,0),
由圖象可知,y=2時(shí),x1<-1,x2>3,
∴x1+1<0,x2-3>0,
∴(x1+1)(x2-3)<0.
故④正確.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2+bx–1的圖象如圖,對(duì)稱軸為直線x=1,若關(guān)于x的一元二次方程x2–2x–1–t=0(t為實(shí)數(shù))在–1<x<4的范圍內(nèi)有實(shí)數(shù)解,則t的取值范圍是
A. t≥–2 B. –2≤t<7
C. –2≤t<2 D. 2<t<7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在星期一的第八節(jié)課,我校體育老師隨機(jī)抽取了九年級(jí)的總分學(xué)生進(jìn)行體育中考的模擬測(cè)試,并對(duì)成績進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,按得分劃分成A、B、C、D、E、F六個(gè)等級(jí),并繪制成如下兩幅不完整的統(tǒng)計(jì)圖表.
等級(jí) | 得分x(分) | 頻數(shù)(人) |
A | 95<x≤100 | 4 |
B | 90<x≤95 | m |
C | 85<x≤90 | n |
D | 80<x≤85 | 24 |
E | 75<x≤80 | 8 |
F | 70<x≤75 | 4 |
請(qǐng)你根據(jù)圖表中的信息完成下列問題:
1)本次抽樣調(diào)查的樣本容量是 .其中m= ,n= .
2)扇形統(tǒng)計(jì)圖中,求E等級(jí)對(duì)應(yīng)扇形的圓心角α的度數(shù);
3)我校九年級(jí)共有700名學(xué)生,估計(jì)體育測(cè)試成績?cè)?/span>A、B兩個(gè)等級(jí)的人數(shù)共有多少人?
4)我校決定從本次抽取的A等級(jí)學(xué)生(記為甲、乙、丙、丁)中,隨機(jī)選擇2名成為學(xué)校代表參加全市體能競(jìng)賽,請(qǐng)你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】廣闊無垠的太空中有無數(shù)顆恒星,其中離太陽系最近的一顆恒星稱為“比鄰星”,它距離太陽系約4.2光年.光年是天文學(xué)中一種計(jì)量天體時(shí)空距離的長度單位,1光年約為9500000000000千米.則“比鄰星”距離太陽系約為( )
A. 千米B. 千米C. 千米D. 千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的半圓中,P是直徑AB上一動(dòng)點(diǎn),過點(diǎn)P作PC⊥AB于點(diǎn)P,交半圓于點(diǎn)C,連接AC.已知AB=6cm,設(shè)A,P兩點(diǎn)間的距離為xcm,P,C兩點(diǎn)間的距離為y1cm,A,C兩點(diǎn)間的距離為y2cm.
小聰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小聰?shù)奶骄窟^程,請(qǐng)補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,分別得到了y1,y2與x的幾組對(duì)應(yīng)值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 2.24 | 2.83 | 2.83 | 2.24 | 0 | |
y2/cm | 0 | 2.45 | 3.46 | 4.24 | 4.90 | 5.48 | 6 |
(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x,y1),(x,y2),并畫出函數(shù)y1,y2的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)△APC有一個(gè)角是30°時(shí),AP的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠加工一種商品,每天加工件數(shù)不超過100件時(shí),每件成本80元,每天加工超過100件時(shí),每多加工5件,成本下降2元,但每件成本不得低于70元.設(shè)工廠每天加工商品x(件),每件商品成本為y(元),
(1)求出每件成本y(元)與每天加工數(shù)量x(件)之間的函數(shù)關(guān)系式,并注明自變量的取值范圍;
(2)若每件商品的利潤定為成本的20%,求每天加工多少件商品時(shí)利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)原計(jì)劃修建一條長100千米的公路,由于實(shí)際情況,進(jìn)行了兩次改道,每次改道以相同的百分率增加修路長度,使得實(shí)際修建長度為121千米,已知甲工程隊(duì)每天比乙工程隊(duì)每天多修路0.5千米,乙工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)是甲工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)的1.5倍。
(1)求兩次改道的平均增長率;
(2)求甲、乙兩個(gè)工程隊(duì)每天各修路多少千米?
(3)若甲工程隊(duì)每天的修路費(fèi)用為0.5萬元,乙工程隊(duì)每天的修路費(fèi)用為0.4萬元,要使兩個(gè)工程隊(duì)修路總費(fèi)用不超過42.4萬元,甲工程隊(duì)至少修路多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,點(diǎn)A、C的橫坐標(biāo)是一元二次方程x2+2x-3=0的兩根(AO>OC),直線AB與y軸交于D,D點(diǎn)的坐標(biāo)為
(1)求直線AB的函數(shù)表達(dá)式;
(2)在x軸上找一點(diǎn)E,連接EB,使得以點(diǎn)A、E、B為頂點(diǎn)的三角形與△ABC相似(不包括全等),并求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,點(diǎn)P、Q分別是AB和AE上的動(dòng)點(diǎn),連接PQ,點(diǎn)P、Q分別從A、E同時(shí)出發(fā),以每秒1個(gè)單位長度的速度運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),兩點(diǎn)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,問幾秒時(shí)以點(diǎn)A、P、Q為頂點(diǎn)的三角形與△AEB相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是放在水平地面上的一把椅子的側(cè)面圖,椅子高為AC,椅面寬為BE,椅腳高為ED,且AC⊥BE,AC⊥CD,AC∥ED.從點(diǎn)A測(cè)得點(diǎn)D、E的俯角分別為64°和53°.已知ED=35cm,求椅子高AC約為多少?
(參考數(shù)據(jù):tan53°≈,sin53°≈,tan64°≈2,sin64°≈)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com