如圖,拋物線y=ax2+bx(a>0)與雙曲線y=
k
x
相交于點A,B.已知點B的坐標為(-2,-2),點A在第一象限內(nèi),且tan∠AOx=4.過點A作直線ACx軸,交拋物線于另一點C.
(1)求雙曲線和拋物線的解析式;
(2)計算△ABC的面積.
(1)把點B的坐標為(-2,-2)代入y=
k
x
,得:k=4,
則反比例函數(shù)的解析式是:y=
4
x

設(shè)A的橫坐標是m,
∵tan∠AOx=4,
∴A的縱坐標是:4m,
把A(m,4m)代入y=
4
x
得:m=1或-1(舍去),
故A的坐標是(1,4),
把A、B的坐標代入y=ax2+bx,得:
a+b=4
4a-2b=-2

解得:
a=1
b=3
,
則拋物線的解析式是:y=x2+3x;

(2)在y=x2+3x中,令y=4,解得:x=1或-4,
則C的坐標是(-4,4).
則AC=5,
又∵B的坐標為(-2,-2),
∴△ABC中BC邊上的高是:6,
∴S△ABC=
1
2
×5×6=15.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,拋物線y=-
3
3
x2+mx+
3
與x軸交于A、B兩點,與y軸交于點C,A點坐標為(-1,0)
(1)求m的值和點B的坐標;
(2)過A、B、C的三點的⊙M交y軸于另一點D,設(shè)P為弧CBD上的動點P(P不與C、D重合),連接AP交y軸于點H,問是否存在一個常數(shù)k,始終滿足AH•AP=k?如果存在,請求出常數(shù)k;如果不存在,請說明理由;
(3)連接DM并延長交BC于N,交⊙M于點E,過E點的⊙M的切線分別交x軸、y軸于點F、G,試探究BC與FG的位置關(guān)系,并求直線FG的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,以點A(3,0)為圓心,以5為半徑的圓與x軸相交于B、C,與y軸相交于點D、E.若拋物線y=
1
4
x2+bx+c
經(jīng)過C、D兩點,求拋物線的解析式,并判斷點B是否在拋物線上.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于40%.經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=80時,y=40;x=70時,y=50.
(1)求一次函數(shù)y=kx+b的表達式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系內(nèi),反比例函數(shù)和二次函數(shù)y=k(x2+x-1)的圖象交于點A(1,k)和點B(-1,-k).
(1)當k=-2時,求反比例函數(shù)的解析式;
(2)要使反比例函數(shù)和二次函數(shù)都是y隨著x的增大而增大,求k應滿足的條件以及x的取值范圍;
(3)設(shè)二次函數(shù)的圖象的頂點為Q,當△ABQ是以AB為斜邊的直角三角形時,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

拋物線的圖象經(jīng)過(0,3),(-2,-5)和(1,4)三點,則它的解析式為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=x2+(2m-1)x+m2-1(m為常數(shù)).
(1)當該拋物線經(jīng)過坐標原點,并且頂點在第四象限時,求出它所對應的函數(shù)關(guān)系式;
(2)設(shè)(1)中的拋物線與x軸的另一個交點為Q,拋物線的頂點為P,試求經(jīng)過O、P、Q三點的圓的圓心O′的坐標;
(3)設(shè)A是(1)所確定的拋物線上位于x軸下方、且在對稱軸左側(cè)的一個動點,過A作x軸的平行線,交拋物線于另一點D,再作AB⊥x軸于B,DC⊥x軸于C,
①當BC=1時,求矩形ABCD的周長;
②試問矩形ABCD的周長是否存在最大值?如果存在,請求出這個最大值,并指出此時A點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某瓜果基地市場部為指導某地某種蔬菜的生產(chǎn)和銷售,在對歷年市場行情和生產(chǎn)情況進行了調(diào)查的基礎(chǔ)上,對今年這種蔬菜上市后的市場售價和生產(chǎn)成本進行了預測,提供了兩個方面的信息.如圖甲、乙兩圖.
注:兩圖中的每個實心黑點所對應的縱坐標分別指相應月份的售價和成本,生產(chǎn)成本6月份最低;圖甲的圖象是線段,圖乙的圖象是拋物線.
(1)在3月份出售這種蔬菜,每千克的收益(收益=售價-成本)是多少元
(2)設(shè)x月份出售這種蔬菜,每千克收益為y元,求y關(guān)于x的函數(shù)解析式;
(3)問哪個月出售這種蔬菜,每千克的收益最大?簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在平面直角坐標系中,二次函數(shù)y=ax2+mc(a≠0)的圖象經(jīng)過正方形ABOC的三個頂點,且ac=-2,則m的值為( 。
A.1B.-1C.2D.-2

查看答案和解析>>

同步練習冊答案