【題目】下列四個圖形中,既是軸對稱又是中心對稱的圖形是( )
A.4個
B.3個
C.2個
D.1個
【答案】C
【解析】解:①是軸對稱圖形,也是中心對稱圖形,符合題意; ②是軸對稱圖形,不是中心對稱圖形,不符合題意;
③是軸對稱圖形,是中心對稱圖形,符合題意;
④軸對稱圖形,不是中心對稱圖形,不符合題意.
綜上可得①③符合題意.
故選C.
【考點精析】通過靈活運用軸對稱圖形和中心對稱及中心對稱圖形,掌握兩個完全一樣的圖形關(guān)于某條直線對折,如果兩邊能夠完全重合,我們就說這兩個圖形成軸對稱,這條直線就對稱軸;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖:二次函數(shù)y=ax2+bx+c的圖象所示,下列結(jié)論中:①abc>0;②2a+b=0;③當m≠1時,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2 , 且x1≠x2 , 則x1+x2=2,正確的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩條筆直的街道AB,CD相交于點O,街道OE,OF分別平分∠AOC,∠BOD,比較∠1與∠2的關(guān)系,并說明街道EOF是筆直的.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】操作探究:如圖,△ABC在平面直角坐標系中,其中,點A,B,C的坐標分別為A(–2,1),B(–4,5),C(–5,2).
(1)作△ABC關(guān)于直線l:x=–1對稱的△A1B1C1,其中,點A, B,C的對稱點分別為點A1,B1,C1;
(2)寫出點C1的坐標__________;
(3)在平面直角坐標系中有一點P位于第四象限,其坐標表示為P(m,n),則點P關(guān)于直線l的對稱點Q的坐標表示為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某年級380名師生秋游,計劃租用7輛客車,現(xiàn)有甲、乙兩種型號客車,它們的載客量和租金如表.
甲種客車 | 乙種客車 | |
載客量(座/輛) | 60 | 45 |
租金(元/輛) | 550 | 450 |
(1)設(shè)租用甲種客車x輛,租車總費用為y元.求出y(元)與x(輛)之間的函數(shù)表達式;
(2)當甲種客車有多少輛時,能保障所有的師生能參加秋游且租車費用最少,最少費用是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠AOB是一個直角,作射線OC,再分別作∠AOC和∠BOC的平分線OD,OE.
(1) 如圖1,當∠BOC=70°時,求∠DOE的度數(shù).
(2) 如圖2,當射線OC在∠AOB內(nèi)繞點O旋轉(zhuǎn)時,∠DOE的大小是否發(fā)生變化?說明理由.
(3) 當射線OC在∠AOB外繞點O旋轉(zhuǎn)且∠AOC為鈍角時,畫出圖形,直接寫出相應(yīng)的∠DOE的度數(shù).(不必寫出過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為4,AD是BC邊上的中線,F是AD邊上的動點,E是AC邊上一點.若AE=2,當EF+CF取得最小值時,∠ECF的度數(shù)為( )
A. 20° B. 25° C. 30° D. 45°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為1的小正方形網(wǎng)格中,△AOB的頂點均在格點上.
(1)B點關(guān)于y軸的對稱點坐標為 ;
(2)將△AOB向左平移3個單位長度,再向上平移2個單位長度得到△A1O1B1,請畫出△A1O1B1;
(3)在(2)的條件下,△AOB邊AB上有一點P的坐標為(a,b),則平移后對應(yīng)點P1的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+3與x軸,y軸分別交于B,C兩點,拋物線y=ax2+bx+c過A(1,0),B,C三點.
(1)求拋物線的解析式;
(2)若點M是拋物線在x軸下方圖形上的動點,過點M作MN∥y軸交直線BC于點N,求線段MN的最大值.
(3)在(2)的條件下,當MN取得最大值時,在拋物線的對稱軸l上是否存在點P,使△PBN是以BN為腰的等腰三角形?若存在,求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com