【題目】如圖,矩形的頂點(diǎn)分別在軸和軸上,點(diǎn)的坐標(biāo)為,雙曲線,的圖象經(jīng)過上的點(diǎn)交于點(diǎn),連接,若若的中點(diǎn)﹒

(1)點(diǎn)的坐標(biāo);

(2)點(diǎn)邊上一點(diǎn),若相似,求的解析式;

(3)若點(diǎn)也在此反比例函數(shù)的圖象上(其中),過點(diǎn)作軸的垂線,交軸于點(diǎn),若線段上存在一點(diǎn),使得的面積是,設(shè)點(diǎn)的縱坐標(biāo)為,求的值.

【答案】(1)點(diǎn)的坐標(biāo)為;(2)的解析式為:,或;(3)

【解析】

(1)先求出點(diǎn)E的坐標(biāo),求出雙曲線的解析式,再求出CD=1,即可得出點(diǎn)D的坐標(biāo);

(2)分兩種情況FBC和△DEB相似,當(dāng)BDBC是對應(yīng)邊時(shí),求出CF得出F的坐標(biāo),用待定系數(shù)法即可求出直線BF的解析式

當(dāng)BDCF是對應(yīng)邊時(shí),求出CF、OF,得出F的坐標(biāo),用待定系數(shù)法即可求出直線BF的解析式;

(3)由題意得出m(3m+6 )=3,m2+2m﹣1=0,由三角形的面積得出mn=1,代入得出n2﹣2n=1,即可得出所求式子的值

1)∵四邊形ABCD是矩形,∴OABCABOC

B(2,3),EAB的中點(diǎn),∴ABOC=3,OABC=2,AEBEAB,∴E(2,),∴k=23,∴雙曲線解析式為y;

∵點(diǎn)D在雙曲線yx>0)上,∴OCCD=3,∴CD=1,∴點(diǎn)D的坐標(biāo)為:(1,3);

(2)∵BC=2,CD=1,∴BD=1,分兩種情況

FBC和△DEB相似當(dāng)BDBC是對應(yīng)邊時(shí),,,∴CF=3,∴F(0,0),FO重合,設(shè)直線BF的解析式為ykx,把點(diǎn)B(2,3)代入得k,∴直線/span>BF的解析式為yx

FBC和△DEB相似,當(dāng)BDCF是對應(yīng)邊時(shí),,∴CF,∴OF=3,∴F(0,),設(shè)直線BF的解析式為yax+c,B(2,3),F(0,)代入得,解得ac,∴直線BF的解析式為y;

綜上所述若△FBC和△DEB相似BF的解析式為yxy;

(3)∵點(diǎn)Pm,3m+6)在反比例函數(shù)y的圖象上,∴m(3m+6 )=3,整理得m2+2m﹣1=0.

PQx,∴Q點(diǎn)的坐標(biāo)為:(m,n).

∵△OQM的面積為,∴OMQM,∴OMQM=1.

m>0,∴mn=1,∴m,代入m2+2m﹣1=01=0,n2﹣2n﹣1=0,∴n2﹣2n=1,∴n2﹣2n+9=10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知正方形的邊長為1,點(diǎn)在邊上,若,且交正方形外角的平分線于點(diǎn)

1)如圖1,若點(diǎn)是邊的中點(diǎn),是邊的中點(diǎn),連接,求證:

2)如圖2,若點(diǎn)在線段上滑動(不與點(diǎn),重合).

①在點(diǎn)滑動過程中,是否一定成立?請說明理由;

②在如圖所示的直角坐標(biāo)系中,當(dāng)點(diǎn)滑動到某處時(shí),點(diǎn)恰好落在直線上,求此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,ABx軸上,以AB為直徑的半圓⊙O‘y軸正半軸交于點(diǎn)C,連接BC,ACCD是半圓⊙O’的切線,AD⊥CD于點(diǎn)D

1)求證:∠CAD =∠CAB3分)

2)已知拋物線A、B、C三點(diǎn),AB=10tan∠CAD=

求拋物線的解析式(3分)

判斷拋物線的頂點(diǎn)E是否在直線CD上,并說明理由(3分);

在拋物線上是否存在一點(diǎn)P,使四邊形PBCA是直角梯形.若存在,直接寫出點(diǎn)P的坐標(biāo)(不寫求解過程);若不存在,請說明理由(3分).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CDAB,BEAC,垂足分別為點(diǎn)D,點(diǎn)E,BECD相交于點(diǎn)O.1=2,則圖中全等三角形共有( )

A. 4B. 3C. 2D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,延長的各邊,使得,順次連接,得到為等邊三角形.

求證:(1;

2為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為m的大正方形,兩塊是邊長都為n的小正方形,五塊是長為m,寬為n的全等小矩形,且mn.(以上長度單位:cm

1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式2m2+5mn+2n2可以因式分解為   ;

2)若每塊小矩形的面積為10cm2,兩個(gè)大正方形和兩個(gè)小正方形的面積和為58cm2,試求m+n的值

3圖中所有裁剪線(虛線部分)長之和為   cm.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題6分)甲、乙兩人進(jìn)行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標(biāo)有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.

(1)甲從中隨機(jī)抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機(jī)抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;

(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個(gè)游戲公平嗎?請用概率的知識加以解釋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某童裝店在服裝銷售中發(fā)現(xiàn):進(jìn)貨價(jià)每件60元,銷售價(jià)每件100元的某童裝每天可售出20為了迎接六一兒童節(jié),童裝店決定采取適當(dāng)?shù)拇黉N措施,擴(kuò)大銷售量,增加盈利經(jīng)調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)1元,那么每天就可多售出2件.

如果童裝店想每天銷售這種童裝盈利1050元,同時(shí)又要使顧客得到更多的實(shí)惠,那么每件童裝應(yīng)降價(jià)多少元?

每件童裝降價(jià)多少元時(shí),童裝店每天可獲得最大利潤?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子里有完全相同的三個(gè)小球,球上分別標(biāo)上數(shù)字-1、1、2.隨機(jī)摸出一個(gè)小球(不放回),其數(shù)字記為p,再隨機(jī)摸出另一個(gè)小球,其數(shù)字記為q,則p,q使關(guān)于x的方程x2+px+q=0有實(shí)數(shù)根的概率是(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案