【題目】如圖1,一個電子蜘蛛從點A出發(fā)勻速爬行,它先沿線段AB爬到點B,再沿半圓經過點M爬到點C.如果準備在M、N、P、Q四點中選定一點安裝一臺記錄儀,記錄電子蜘蛛爬行的全過程.設電子蜘蛛爬行的時間為x,電子蜘蛛與記錄儀之間的距離為y,表示y與x函數關系的圖象如圖2所示,那么記錄儀可能位于圖1中的( )
A.點M
B.點N
C.點P
D.點Q
【答案】C
【解析】解:A、從A點到M點y隨x而減小一直減小到0,故A不符合題意;
B、從A到B點y隨x的增大而減小,從B到C點y的值不變,故B不符合題意;
C、從A到AB的中點y隨x的增大而減小,從AB的中點到M點y隨x的增大而增大,從M點到C點y隨x的增大而減小,故C符合題意;
D、從A到M點y隨x的增大而增大,從M點到C點y隨x的增大而減小,故D不符合題意;
故選:C.
【考點精析】本題主要考查了函數的圖象的相關知識點,需要掌握函數的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數值才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,O是對角線AC與BD的交點,M是BC邊上的動點(點M不與B,C重合),CN⊥DM,CN與AB交于點N,連接OM,ON,MN.下列五個結論:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,則S△OMN的最小值是 ,其中正確結論的個數是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交A、B兩點(A點在B點左側),直線l與拋物線交于A、C兩點,其中C點的橫坐標為2.
(1)求A、B兩點的坐標及直線AC的函數表達式;
(2)P是線段AC上的一個動點,過P點作y軸的平行線交拋物線于E點,求線段PE長度的最大值;
(3)點G拋物線上的動點,在x軸上是否存在點F,使A、C、F、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經過點A的直線y=﹣ x+b與拋物線的另一個交點為D.
(1)若點D的橫坐標為2,求拋物線的函數解析式;
(2)若在第三象限內的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;
(3)在(1)的條件下,設點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒 個單位的速度運動到點D后停止,問當點E的坐標是多少時,點Q在整個運動過程中所用時間最少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小宇想測量位于池塘兩端的A、B兩點的距離.他沿著與直線AB平行的道路EF行走,當行走到點C處,測得∠ACF=45°,再向前行走100米到點D處,測得∠BDF=60°.若直線AB與EF之間的距離為60米,求A、B兩點的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】旅游公司在景區(qū)內配置了50輛觀光車供游客租賃使用,假定每輛觀光車一天內最多只能出租一次,且每輛車的日租金是x(元).發(fā)現每天的營運規(guī)律如下:當x不超過100元時,觀光車能全部租出;當x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.當每輛車的日租金為多少元時,每天的凈收入最多?(注:凈收入=租車收入﹣管理費)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為AB的中點,F為AD上一點,EF交AC于G,AF=2cm,DF=4cm,AG=3cm,則AC的長為( )
A.9cm
B.14cm
C.15cm
D.18cm
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com