【題目】如圖,在RtABC中,BD平分∠ABCAC于點(diǎn)D,過DDEBCAB于點(diǎn)E,若DE剛好平分∠ADB,且AEa,則BC_____

【答案】6a

【解析】

根據(jù)角平分線的定義得到∠ABD=∠CBD,根據(jù)平行線的性質(zhì)得到∠ADE=∠C,∠EDB=∠CBD,求得∠C30°,根據(jù)含30°角的直角三角形的性質(zhì)即可得到結(jié)論.

BD平分∠ABC,

∴∠ABD=∠CBD,

DEBC

∴∠ADE=∠C,∠EDB=∠CBD,

DE平分∠ADB

∴∠ADE=∠EDB,

∴∠CBD=∠C,

∴∠ABC2C

∵∠A90°,

∴∠ABC+C90°,

∴∠C30°

∴∠ADE30°,

AEa

DE2a,

∵∠EDB=∠DBC

DBE=∠EBD,

BEDE2a,

AB3a,

BC2AB6a

故答案為:6a

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程(x–2)(x–3)=m有實(shí)數(shù)根x1x2,且x1<x2,則下列結(jié)論中錯(cuò)誤的是

A. 當(dāng)m=0時(shí),x1=2,x2=3

B. m>–

C. 當(dāng)m>0時(shí),2<x1<x2<3

D. 二次函數(shù)y=(xx1)(xx2)+m的圖象與x軸交點(diǎn)的坐標(biāo)為(2,0)和(3,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,且AD=12cm.點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度在射線AD上運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度在射線CB上運(yùn)動(dòng).運(yùn)動(dòng)時(shí)間為t,當(dāng)t=______秒(s)時(shí),點(diǎn)P、Q、CD構(gòu)成平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別相交于點(diǎn)A和B.

(1)直接寫出坐標(biāo):點(diǎn)A ,點(diǎn)B ;

2以線段AB為一邊在第一象限內(nèi)作ABCD,其頂點(diǎn)D(, )在雙曲線 ()上.

①求證:四邊形ABCD是正方形;

②試探索:將正方形ABCD沿軸向左平移多少個(gè)單位長(zhǎng)度時(shí),點(diǎn)C恰好落在雙曲線 ()上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AE平分∠BAD,交BC于點(diǎn)EABAE,延長(zhǎng)ABDE的延長(zhǎng)線相交于點(diǎn)F,連接ACCF.下列結(jié)論:①△ABC≌△EAD;②△ABE是等邊三角形;③BFAD;④SBEFSABC;⑤SCEFSABE;其中正確的有( )

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABACE,F分別是BC,AC的中點(diǎn),以AC為斜邊作RtADC,若∠CAD=∠BAC45°,則下列結(jié)論:①CDEF;②EFDF;③DE平分∠CDF;④∠DEC30°;⑤ABCD;其中正確的是_____(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在反比例函數(shù)y= 的圖象上有一動(dòng)點(diǎn)A,連接AO并延長(zhǎng)交圖象的另一支于點(diǎn)B,在第二象限內(nèi)有一點(diǎn)C,滿足AC=BC,當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí),點(diǎn)C始終在函數(shù)y= 的圖象上運(yùn)動(dòng),若tanCAB=2,則k的值為(

A. ﹣3 B. ﹣6 C. ﹣9 D. ﹣12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,在中,,點(diǎn)在線段上,點(diǎn)在線段的延長(zhǎng)線上.將繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)60°得到(點(diǎn)的對(duì)應(yīng)點(diǎn)為,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn)),連接、,過點(diǎn),垂足為,直線交線段,則的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐角系中,點(diǎn)是原點(diǎn),點(diǎn)、在坐標(biāo)軸上,連接,點(diǎn)軸上,且點(diǎn)是線段的垂直平分線上一點(diǎn).

1)求點(diǎn)的坐標(biāo);

2)點(diǎn)從點(diǎn)出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向終點(diǎn)運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),連接、,若點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,的面積為,用含的式子表示;

3)在(2)的條件下,過點(diǎn)垂直軸,交,若,求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案