【題目】如圖,分別以Rt△ABC的直角邊AC,斜邊AB為邊向外作等邊三角形△ACD和△ABE,F為AB的中點(diǎn),連接DF,EF,∠ACB=90°,∠ABC=30°.則以下4個(gè)結(jié)論:①AC⊥DF;②四邊形BCDF為平行四邊形;③DA+DF=BE;④其中,正確的 是( 。
A.只有①②B.只有①②③C.只有③④D.①②③④
【答案】A
【解析】
根據(jù)平行四邊形的判定定理判斷②,根據(jù)平行四邊形的性質(zhì)和平行線的性質(zhì)判斷①,根據(jù)三角形三邊關(guān)系判斷③,根據(jù)等邊三角形的性質(zhì)分別求出△ACD、△ACB、△ABE的面積,計(jì)算即可判斷④.
∵∠ACB=90°,∠ABC=30°,
∴∠BAC=60°,AC=AB,
∵△ACD是等邊三角形,
∴∠ACD=60°,
∴∠ACD=∠BAC,
∴CD∥AB,
∵F為AB的中點(diǎn),
∴BF=AB,
∴BF∥CD,CD=BF,
∴四邊形BCDF為平行四邊形,②正確;
∵四邊形BCDF為平行四邊形,
∴DF∥BC,又∠ACB=90°,
∴AC⊥DF,①正確;
∵DA=CA,DF=BC,AB=BE,BC+AC>AB
∴DA+DF>BE,③錯(cuò)誤;
設(shè)AC=x,則AB=2x,
S△ACD= ,④錯(cuò)誤,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),B(3,0).下列結(jié)論:①2a﹣b=0; ②(a+c)2<b2; ③當(dāng)﹣1<x<3時(shí),y<0; ④當(dāng)a=1時(shí),將拋物線先向上平移2個(gè)單位,再向右平移1個(gè)單位,得到拋物線y=(x﹣2)2﹣2.其中正確的是______________________.(填寫正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知菱形的邊長和一條對角線的長均為2 cm,則菱形的面積為( )
A. 3cm2 B. 4 cm2 C. cm2 D. 2cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校名學(xué)生參加植樹活動(dòng),要求每人植棵,活動(dòng)結(jié)束后隨機(jī)抽查了名學(xué)生每人的植樹量,并分為四種類型,:棵;;棵;:棵,:棵。將各類的人繪制成扇形圖(如圖1)和條形圖(如圖2),經(jīng)確認(rèn)扇形圖是正確的,而條形圖尚有一處錯(cuò)誤。
回答下列問題:
(1)寫出條形圖中存在的錯(cuò)誤,并說明理由.
(2)寫出這名學(xué)生每人植樹量的眾數(shù)、中位數(shù).
(3)在求這名學(xué)生每人植樹量的平均數(shù).
(4)估計(jì)這名學(xué)生共植樹多少棵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:
已知:∠ACB是△ABC的一個(gè)內(nèi)角.
求作:∠APB=∠ACB.
小明的做法如下:
如圖
①作線段AB的垂直平分線m;
②作線段BC的垂直平分線n,與直線m交于點(diǎn)O;
③以點(diǎn)O為圓心,OA為半徑作△ABC的外接圓;
④在弧ACB上取一點(diǎn)P,連結(jié)AP,BP.
所以∠APB=∠ACB.
老師說:“小明的作法正確.”
請回答:
(1)點(diǎn)O為△ABC外接圓圓心(即OA=OB=OC)的依據(jù)是_____;
(2)∠APB=∠ACB的依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點(diǎn)D.過點(diǎn)A作⊙O的切線與
OD的延長線交于點(diǎn)P,PC、AB的延長線交于點(diǎn)F.
(1)求證:PC是⊙O的切線;
(2)若∠ABC=60°,AB=10,求線段CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過點(diǎn)E做直線l∥BC.
(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;
(2)若∠ABC的平分線BF交AD于點(diǎn)F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】開口向下的拋物線y=a(x+1)(x-9)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,若∠ACB=90°,則a的值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com