閱讀材料:大數(shù)學(xué)家高斯在上學(xué)讀書時曾經(jīng)研究過這樣一個問題:1+2+3+…+100=?經(jīng)過研究,這個問題的一般性結(jié)論是1+2+3+…+n=
1
2
n(n+1),其中n是正整數(shù).現(xiàn)在我們來研究一個類似的問題:1×2+2×3+…n(n+1)=?
觀察下面三個特殊的等式:
1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3),
3×4=
1
3
(3×4×5-2×3×4),
將這三個等式的兩邊相加,可以得到:
1×2+2×3+3×4=
1
3
(1×2×3-0×1×2+2×3×4-1×2×3
+3×4×5-2×3×4)
=
1
3
×3×4×5
=20
讀完這段材料,請你思考后回答:
(1)1×2+2×3+…+7×8=
168
168
;
(2)1×2+2×3+…+n(n+1)=
1
3
n(n+1)(n+2)
1
3
n(n+1)(n+2)
;
(3)若1×2+2×3+…+n(n+1)=
1
3
×9×10×11
,求n邊形的內(nèi)角和度數(shù).
分析:(1)根據(jù)已知可以得出,1×2+2×3+…+7×8等于
1
3
×7×8×9,即每一項增加1,即可得出答案;
(2)根據(jù)前面的規(guī)律可得它們的和是n(n+1)(n+2)乘積的
1
3
;
(3)根據(jù)1×2+2×3+…+n(n+1)=
1
3
×9×10×11
,可得關(guān)于n的方程,再根據(jù)n邊形的內(nèi)角和公式即可求解.
解答:解:(1)1×2+2×3+…+7×8=
1
3
×7×8×9=168;

(2)1×2+2×3+…+n(n+1)=
1
3
n(n+1)(n+2);

(3)∵1×2+2×3+…+n(n+1)=
1
3
×9×10×11
,
∴n=9,
∴n邊形的內(nèi)角和度數(shù)為:(9-2)×180°=1260°.
故答案為:168;
1
3
n(n+1)(n+2).
點評:此題主要考查了數(shù)字的規(guī)律性問題,這是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.學(xué)生很容易發(fā)現(xiàn)各部分的變化規(guī)律,但是如何用一個統(tǒng)一的式子表示出變化規(guī)律是難點中的難點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料,大數(shù)學(xué)家高斯在上學(xué)讀書時曾經(jīng)研究過這樣一個問題:1+2+3+…+100=?經(jīng)過研究,這個問題的一般性結(jié)論是1+2+3+4+5+…+n=
1
2
n(n+1)
,其中n是正整數(shù).現(xiàn)在我們來研究一個類似的問題:
觀察下面三個特殊的等式:
1×2+2×3+3×4+…+n(n+1)=
1×2=
1
3
(1×2×3-0×1×2)
2×3=
1
3
(2×3×4-1×2×3)
3×4=
1
3
(3×4×5-2×3×4)
將這三個等式的兩邊分別相加,可以得到1×+2×3+3×4=
1
3
×3×4×5=20
讀完這段材料,請你思考后回答:
(1)1×2+2×3+3×4+…+100×101=
 

(2)1×2+2×3+3×4+…+n(n+1)=
 

(3)1×2×3+2×3×4+…+n(n+1)(n+2)=
 

(只需寫出結(jié)果,不必寫中間的過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料,大數(shù)學(xué)家高斯在上學(xué)讀書時曾經(jīng)研究過這樣一個問題:1+2+3+…+100=?經(jīng)過研究,這個問題的一般性結(jié)論是1+2+3+…+n=
1
2
n(n+1)
,其中n是正整數(shù).現(xiàn)在我們來研究一個類似的問題:1×2+2×3+…n(n+1)=?
觀察下面三個特殊的等式1×2=
1
3
(1×2×3-0×1×2)
2×3=
1
3
(2×3×4-1×2×3)
,3×4=
1
3
(3×4×5-2×3×4)

讀完這段材料,請你思考后回答:
(1)5×6=
 
=
 

將前面兩個等式的兩邊相加,可以得到
1×2+2×3=
1
3
×2×3×4=8
將這三個等式的兩邊相加,可以得到
1×2+2×3+3×4=
1
3
×3×4×5=20

讀完這段材料,請你思考后回答:
(2)1×2+2×3+…+100×101=
 
=
 

(3)1×2+2×3+…+n(n+1)=
 
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料,大數(shù)學(xué)家高斯在上學(xué)讀書時曾經(jīng)研究過這樣一個問題:1+2+3+…+100=?我們可以先從簡單的幾個數(shù)開始,計算、觀察,尋求規(guī)律,得出一般性的結(jié)論.1=
1×2
2
=1
,1+2=
2×3
2
=3,1+2+3=
3×4
2
=6,1+2+3+4=
4×5
2
=10
;…,
(1)計算:1+2+3+…+100=
5050
5050

(2)計算:41+42+43+…+100=
5050
5050
-
820
820
=
4230
4230

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇省月考題 題型:探究題

閱讀材料,大數(shù)學(xué)家高斯在上學(xué)讀書時曾經(jīng)研究過這樣一個問題:…+100=經(jīng)過研究,這個問題的一般性結(jié)論是1+2+3+4+5+…+n'=,其中n是正整數(shù).現(xiàn)在我們來研究一個類似的問題:觀察下面三個特殊的等式:
1×2+2×3+3×4+…+n(n+1)=
1×2=(1×2×3﹣0×1×2)
2×3=(2×3×4﹣1×2×3)
3×4=(3×4×5﹣2×3×4)
將這三個等式的兩邊分別相加,可以得到1×2×3+3×4=×3×4×5=20
讀完這段材料,請你思考后回答:
(1)1×2+2×3+3×4+…+100×101= _________
(2)1×2+2×3+3×4+…+n(n+1)= _________
(3)1×2×3+2×3×4+…+n(n+1)(n+2)= _________ .(只需寫出結(jié)果,不必寫中間的過程)

查看答案和解析>>

同步練習(xí)冊答案