【題目】如圖,射線AN上有一點(diǎn)B,AB=5,tan∠MAN=,點(diǎn)C從點(diǎn)A出發(fā)以每秒3個(gè)單位長度的速度沿射線AN運(yùn)動(dòng),過點(diǎn)C作CD⊥AN交射線AM于點(diǎn)D,在射線CD上取點(diǎn)F,使得CF=CB,連結(jié)AF.設(shè)點(diǎn)C的運(yùn)動(dòng)時(shí)間是t(秒)(t>0).
(1)當(dāng)點(diǎn)C在點(diǎn)B右側(cè)時(shí),求AD、DF的長.(用含t的代數(shù)式表示)
(2)連結(jié)BD,設(shè)△BCD的面積為S平方單位,求S與t之間的函數(shù)關(guān)系式.
(3)當(dāng)△AFD是軸對(duì)稱圖形時(shí),直接寫出t的值.
【答案】(1)AD=5t,DF=t+5.(2)當(dāng)0<t<時(shí),S=﹣6t2+10t.當(dāng)t>時(shí),S=6t2﹣10t.(3)t的值為或或.
【解析】
(1)利用勾股定理算出AD,表示出CB,即可表示出DF.
(2)分別討論0<t<時(shí)和t>時(shí),利用面積公式計(jì)算即可.
(3)分別討論當(dāng)DF=AD時(shí)的一種情況、當(dāng)AF=DF時(shí)的兩種情況.
解:(1)在Rt△ACD中,AC=3t,tan∠MAN=,
∴CD=4t.
∴AD=,
當(dāng)點(diǎn)C在點(diǎn)B右側(cè)時(shí),CB=3t﹣5,
∴CF=CB.
∴DF=4t﹣(3t﹣5)=t+5.
(2)當(dāng)0<t<時(shí),S=(5﹣3t)4t=﹣6t2+10t.
當(dāng)t>時(shí),S=(3t﹣5)4t=6t2﹣10t.
(3)①如圖1中,當(dāng)DF=AD時(shí),△ADF是軸對(duì)稱圖形.
則有5﹣3t﹣4t=5t,解得t=,
②如圖2中,當(dāng)AF=DF時(shí),△ADF是軸對(duì)稱圖形.
作FH⊥AD.
∵FA=DF,
∴AH=DH=t,
由cos∠FDH=,可得,解得t=.
③如圖3中,當(dāng)AF=DF時(shí),△ADF是軸對(duì)稱圖形.
作FH⊥AD.
∵FA=DF,
∴AH=DH=t,
由cos∠FDH=,可得,解得t=.
綜上所述,滿足條件的t的值為或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】壓歲錢由來已久,古稱“厭勝錢”、“壓祟錢”等.鐺鐺同學(xué)在2019年春節(jié)共收到10位長輩給的壓歲錢,分別是:100元、200元、100元、50元、400元、300元、50元、100元、200元、400元.關(guān)于這組數(shù)據(jù),下列說法正確的是( )
A.中位數(shù)是200元B.眾數(shù)是100元
C.平均數(shù)是200元D.極差是300元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b是任意兩個(gè)不等實(shí)數(shù),我們規(guī)定:滿足不等式a≤x≤b的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對(duì)于一個(gè)函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時(shí),有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m.n]上的“閉函數(shù)”.如函數(shù),當(dāng)x=1時(shí),y=3;當(dāng)x=3時(shí),y=1,即當(dāng)時(shí),有,所以說函數(shù)是閉區(qū)間[1,3]上的“閉函數(shù)”.
(1)反比例函數(shù)y=是閉區(qū)間[1,2016]上的“閉函數(shù)”嗎?請(qǐng)判斷并說明理由;
(2)若二次函數(shù)y=是閉區(qū)間[1,2]上的“閉函數(shù)”,求k的值;
(3)若一次函數(shù)y=kx+b(k≠0)是閉區(qū)間[m,n]上的“閉函數(shù)”,求此函數(shù)的表達(dá)式(用含m,n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
如圖①,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與A、B重合),分別連接ED、EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的“相似點(diǎn)”;如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的“強(qiáng)相似點(diǎn)”.解決問題:
(1)如圖①,∠A=∠B=∠DEC=45°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說明理由;
(2)如圖②,在矩形ABCD中,A、B、C、D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長為1)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在圖②中畫出矩形ABCD的邊AB上的強(qiáng)相似點(diǎn);
(3)如圖③,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處,若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),試確定E點(diǎn)位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PB與⊙O相切于點(diǎn)B,連接PA交⊙O于點(diǎn)C,連接BC.
(1)求證:∠BAC=∠CBP;
(2)求證:PB2=PCPA;
(3)當(dāng)AC=6,CP=3時(shí),求sin∠PAB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,點(diǎn)D是邊AC的中點(diǎn),點(diǎn)E,F在邊AB上,當(dāng)△DEF是等腰三角形,且底角的正切值是時(shí),△DEF腰長的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣3交x軸于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,頂點(diǎn)是D,對(duì)稱軸交x軸于點(diǎn)E.
(1)求拋物線的解析式;
(2)點(diǎn)P是拋物線在第四象限內(nèi)的一點(diǎn),過點(diǎn)P作PQ∥y軸,交直線AC于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)是m.
①求線段PQ的長度n關(guān)于m的函數(shù)關(guān)系式;
②連接AP,CP,求當(dāng)△ACP面積為時(shí)點(diǎn)P的坐標(biāo);
(3)若點(diǎn)N是拋物線對(duì)稱軸上一點(diǎn),則拋物線上是否存在點(diǎn)M,使得以點(diǎn)B,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出線段BN的長度;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩種客車,2輛甲種客車與3輛乙種客車的總載客量為180人,1輛甲種客車與2輛乙種客車的總載客量為105人.
(1)請(qǐng)問1輛甲種客車與1輛乙種客車的載客量分別為多少人?
(2)某學(xué)校組織240名師生集體外出活動(dòng),擬租用甲、乙兩種客車共6輛,一次將全部師生送到指定地點(diǎn).若每輛甲種客車的租金為400元,每輛乙種客車的租金為280元,請(qǐng)給出最節(jié)省費(fèi)用的租車方案,并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點(diǎn)C,AD⊥EF于點(diǎn)D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=AD·AB;
(3)若⊙O的半徑為2,∠ACD=300,求圖中陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com