【題目】如圖所示的一塊地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求這塊地的面積.
【答案】這塊地的面積為216m2.
【解析】
試題分析:連接AC,根據(jù)直角△ACD可以求得斜邊AC的長(zhǎng)度,根據(jù)AC,BC,AB可以判定△ABC為直角三角形,要求這塊地的面積,求△ABC與△ACD的面積之差即可.
解:連接AC,
已知,在直角△ACD中,CD=9m,AD=12m,
根據(jù)AD2+CD2=AC2,可以求得AC=15m,
在△ABC中,AB=39m,BC=36m,AC=15m,
∴存在AC2+CB2=AB2,
∴△ABC為直角三角形,
要求這塊地的面積,求△ABC和△ACD的面積之差即可,
S=S△ABC﹣S△ACD=ACBC﹣CDAD,
=×15×36﹣×9×12,
=270﹣54,
=216m2,
答:這塊地的面積為216m2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一元二次方程x2﹣2x﹣a=0沒(méi)有實(shí)數(shù)根,則一次函數(shù)y=(a+1)x+(a﹣1)的圖象不過(guò)第( )
A.一象限 B.二象限 C.三象限 D.四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角形坐標(biāo)系中有兩點(diǎn)A(6,0)、B(0,8),點(diǎn)C為AB的中點(diǎn),點(diǎn)D在x軸上,當(dāng)點(diǎn)D的坐標(biāo)為 時(shí),由點(diǎn)A、C、D組成的三角形與△AOB相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,對(duì)角線AC、BD相交于點(diǎn)O,DH⊥AB于H,
連接OH,求證:∠DHO=∠DCO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年9月19日,重慶市第五屆運(yùn)動(dòng)會(huì)開幕式將在溶陵區(qū)拉開大幕,組委會(huì)面向社會(huì)公開征集了主題門號(hào)、會(huì)徽、會(huì)歌,吉祥物等元素,共收到有效作品1600余件,數(shù)據(jù)1600用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以40m/s的速度將小球沿與地面成某一角度的方向擊出時(shí),小球的飛行路線將是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時(shí)間(單位:s)之間具有函數(shù)關(guān)系h=20t﹣5t2.請(qǐng)解答以下問(wèn)題:
(1)小球的飛行高度能否達(dá)到15m?如果能,需要多少飛行時(shí)間?
(2)小球的飛行高度能否達(dá)到20.5m?為什么?
(3)小球從飛出到落地要用多少時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果將二次函數(shù)y=3x2的圖象向上平移5個(gè)單位,得到新的圖象的二次函數(shù)表達(dá)式是( )
A.y=3x2-5 B.y=3(x-5)2
C.y=3x2+5 D.y=3(x+5)2-5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=﹣x+2和y=2x﹣3的圖象分別交y軸與A、B兩點(diǎn),兩個(gè)一次函數(shù)的圖象相交于點(diǎn)P.
(1)求△PAB的面積;
(2)求證:∠APB=90°;
(3)若在一次函數(shù)y=2x﹣3的圖象上有一點(diǎn)N,且橫坐標(biāo)為x,連結(jié)NA,請(qǐng)直接寫出△NAP的面積關(guān)于x的函數(shù)關(guān)系式,并寫出相應(yīng)x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com