【題目】如圖順次連接等腰梯形四邊中點(diǎn)得到一個(gè)四邊形,再順次連接所得四邊形四邊的中點(diǎn)得到的圖形是( )

A. 等腰梯形B. 直角梯形C. 菱形D. 矩形

【答案】D

【解析】

首先作出圖形,根據(jù)三角形的中位線定理,可以得到,,再根據(jù)等腰梯形的對(duì)角線相等,即可證得四邊形EFGH的四邊相等,即可證得是菱形,然后根據(jù)三角形中位線定理即可證得四邊形OPMN的一組對(duì)邊平行且相等,則是平行四邊形,在根據(jù)菱形的對(duì)角線互相垂直,即可證得平行四邊形的一組臨邊互相垂直,即可證得四邊形OPMN是矩形.

解:連接ACBD

E,FAB,AD的中點(diǎn),即EF的中位線.

,

同理:,

等腰梯形ABCD中,

四邊形EFGH是菱形.

的中位線,

EF EG,

同理,NMEG,

EFNM,

四邊形OPMN是平行四邊形.

,,

菱形EFGH中,,

平行四邊形OPMN是矩形.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在中,AB=AC,∠ABC =DBC邊上一點(diǎn),以AD為邊作,使AE=AD+=180°

1)直接寫出∠ADE的度數(shù)(用含的式子表示);

2)以AB,AE為邊作平行四邊形ABFE

如圖2,若點(diǎn)F恰好落在DE上,求證:BD=CD

如圖3,若點(diǎn)F恰好落在BC上,求證:BD=CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C,且OA=1,OB=3,頂點(diǎn)為D,對(duì)稱軸交x軸于點(diǎn)Q.

(1)求拋物線對(duì)應(yīng)的二次函數(shù)的表達(dá)式;

(2)點(diǎn)P是拋物線的對(duì)稱軸上一點(diǎn),以點(diǎn)P為圓心的圓經(jīng)過A、B兩點(diǎn),且與直線CD相切,求點(diǎn)P的坐標(biāo);

(3)在拋物線的對(duì)稱軸上是否存在一點(diǎn)M,使得△DCM∽△BQC?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3).

(1)求該拋物線所對(duì)應(yīng)的二次函數(shù)的表達(dá)式及頂點(diǎn)M的坐標(biāo);

(2)連結(jié)CB、CM,過點(diǎn)MMN⊥y軸于點(diǎn)N,求證:∠BCM=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間,甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲車出發(fā)至甲車到達(dá)C地的過程中,甲、乙兩車各自與C地的距離ykm)與甲車行駛時(shí)間th)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①甲車出發(fā)2h時(shí),兩車相遇;②乙車出發(fā)1.5h時(shí),兩車相距170km;③乙車出發(fā)h時(shí),兩車相遇;④甲車到達(dá)C地時(shí),兩車相距40km.其中正確的是______(填寫所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們?cè)凇队欣頂?shù)》這一章中學(xué)習(xí)過絕對(duì)值的概念:

一般的,數(shù)軸上表示數(shù)的點(diǎn)與原點(diǎn)的距離叫做數(shù)的絕對(duì)值,記作.

實(shí)際上,數(shù)軸上表示數(shù)的點(diǎn)與原點(diǎn)的距離可記作,數(shù)軸上表示數(shù)的點(diǎn)與表示數(shù)2的點(diǎn)的距離可記作,那么:

1)①數(shù)軸上表示數(shù)3的點(diǎn)與表示數(shù)1的點(diǎn)的距離可記作 .

②數(shù)軸上表示數(shù)的點(diǎn)與表示數(shù)2的點(diǎn)的距離可記作 .

③數(shù)軸上表示數(shù)的點(diǎn)與表示數(shù)的點(diǎn)的距離可記作 .

2)數(shù)軸上與表示數(shù)的點(diǎn)的距離為5的點(diǎn)有 個(gè),它表示的數(shù)為 .

3)拓展:①當(dāng)數(shù)取值為 時(shí),數(shù)軸上表示數(shù)的點(diǎn)與表示數(shù)的點(diǎn)的距離最小.

②當(dāng)整數(shù)取值為 時(shí),式子有最小值為 .

③當(dāng)取值范圍為 時(shí),式子有最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,動(dòng)點(diǎn)S從點(diǎn)A出發(fā),沿線段AB運(yùn)動(dòng)至點(diǎn)B后,立即按原路返回,點(diǎn)S在運(yùn)動(dòng)過程中速度不變,則以點(diǎn)B為圓心,線段BS長(zhǎng)為半徑的圓的面積m與點(diǎn)S的運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系圖象大致為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖ABC是等邊三角形,四邊形BDEF是菱形,其中E=60°,將菱形BDEF繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn),甲、乙兩位同學(xué)發(fā)現(xiàn)在此旋轉(zhuǎn)過程中,有如下結(jié)論

線段AF與線段CD的長(zhǎng)度總相等

直線AF和直線CD所夾的銳角的度數(shù)不變;

那么你認(rèn)為( 。

A. 甲、乙都對(duì) B. 乙對(duì)甲不對(duì)

C. 甲對(duì)乙不對(duì) D. 甲、乙都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案