【題目】如圖,在平行四邊形中,上的一點,直線的延長線交于點,并與交于點,下列式子中錯誤的是(

A. B. C. D.

【答案】D

【解析】

由平行四邊形的性質(zhì)得出ABCD,ADBE,證明四邊形AGCF是平行四邊形,BCG∽△BEA,CEF∽△BEA,得出,,CF=AG,證出DF=BG,得出選項A、B正確;由平行線證出,得出,得出選項C正確,D不正確;即可得出結(jié)論.

∵四邊形ABCD是平行四邊形,

ABCD,ADBE,

CGAE,

∴四邊形AGCF是平行四邊形,BCG∽△BEA,CEF∽△BEA,

,,CF=AG,

DF=BG,,

∴選項A、B正確;

ADBE,

,

∴選項C正確,D不正確;

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線PT與⊙O相交于點T,直線PO與⊙O相交于A,B兩點.已知∠PTA=∠B.

(1)求證:PT是⊙O的切線;

(2)若PT=6,PA=4,求⊙O的半徑;

(3)若PT=TB=,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點,且點A的橫坐標(biāo)為4,

(1)求k的值;

(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍;

(3)過原點O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(P點在第一象限),若由點A、P、B、Q為頂點組成的四邊形面積為224,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,放置的△OAB,,,…都是邊長為2的等邊三角形,邊AO軸上,點、、都在直線上,則點的坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面直角坐標(biāo)系中,直線交坐標(biāo)軸于A、B兩點,過點C,0)作CDABD,交軸于點E.且△COE≌△BOA.

1)求B點坐標(biāo)為 ;線段OA的長為 ;

2)確定直線CD解析式,求出點D坐標(biāo);

3)如圖2,點M是線段CE上一動點(不與點C、E重合),ONOMAB于點N,連接MN.

①點M移動過程中,線段OMON數(shù)量關(guān)系是否不變,并證明;

②當(dāng)△OMN面積最小時,求點M的坐標(biāo)和△OMN面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將放在每個小正方形的邊長為的網(wǎng)格中,點、均落在格點上.

(1)的面積等于________;

若四邊形中所能包含的面積最大的正方形,請你在如圖所示的網(wǎng)格中,用直尺和三角尺畫出該正方形,并簡要說明畫圖方法(不要求證明)________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,每個最小方格的邊長均為1個單位長度,P1,P2,P3均在格點上,其順序按圖中“→”方向排列,如:P1(00),P2(01),P3(11),P4(1,-1),P5(1,-1),P6(1,2),,根據(jù)這個規(guī)律,點P2 019的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,分別是,,的中點.點從點出發(fā)沿折線以每秒個單位長的速度勻速運動;點從點出發(fā)沿方向以每秒個單位長的速度勻速運動,過點作射線,交折線于點.點,同時出發(fā),當(dāng)點繞行一周回到點時停止運動,點也隨之停止.設(shè)點,運動的時間是

(1),兩點間的距離是________;

射線能否把四邊形分成面積相等的兩部分?若能,求出的值;若不能,說明理由;

當(dāng)點運動到折線上,且點又恰好落在射線上時,求的值;

連接,當(dāng)時,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一次數(shù)學(xué)活動課上,張明用17個邊長為1的小正方形搭成了一個幾何體,然后他請王亮用其他同樣的小正方體在旁邊再搭一個幾何體,使王亮所搭幾何體恰好可以和張明所搭幾何體拼成一個無縫隙的大長方體(不改變張明所搭幾何體的形狀),那么王亮至少還需要 個小立方體,王亮所搭幾何體的表面積為

查看答案和解析>>

同步練習(xí)冊答案