【題目】如圖,在△ABC中,點D是BC的中點,點F是AD的中點,過點D作DE∥AC,交CF的延長線于點E,連接BE,AE.

(1)求證:四邊形ACDE是平行四邊形;

(2)若AB=AC,試判斷四邊形ADBE的形狀,并證明你的結(jié)論.

【答案】見試題解析

【解析】

試題分析:(1)首先證明△AFC≌△DFE,根據(jù)全等三角形對應(yīng)邊相等可得AC=DE,再根據(jù)一組對邊平行且相等的四邊形是平行四邊形可得結(jié)論;

(2)首先證明四邊形ADBE為平行四邊形,再根據(jù)等腰三角形的性質(zhì)可得AD⊥CB,進(jìn)而可得四邊形ADBE為矩形.

試題解析:(1)證明:∵DE∥AC,

∴∠CAF=∠EDF,

∵點F是AD的中點,

∴FA=DF,

在△AFC和△DFE中

∴△AFC≌△DFE(ASA),

∴AC=DE,

∴四邊形ACDE是平行四邊形;

(2)解:四邊形ADBE為矩形,理由如下:

∵四邊形ACDE是平行四邊形,

∴AE=CD且AE∥CB,

∵點D是BC的中點,

∴CD=DB,

∴AE=BD且AE∥DB,

∴四邊形ADBE為平行四邊形,

又∵AB=AC,

∴AD⊥CB,

∴∠ADB=90°,

∴四邊形ADBE為矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是( 。.
A.“打開電視機(jī),正在播放《動物世界》”是必然事件
B.某種彩票的中獎概率為 ,說明每買1000張,一定有一張中獎
C.拋擲一枚質(zhì)地均勻的硬幣一次,出現(xiàn)正面朝上的概率為
D.想了解長沙市所有城鎮(zhèn)居民的人均年收入水平,宜采用抽樣調(diào)查

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y= 與y=m﹣x的圖象的一個交點是A(2,3),其中k、m為常數(shù).
(1)求k、m的值,畫出函數(shù)的草圖.
(2)根據(jù)圖象,確定自變量x的取值范圍,使一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把正整數(shù)1,2,3,4,2016排列成如圖所示的形式.

(1)用一個矩形隨意框住4個數(shù),把其中最小的數(shù)記為,另三個數(shù)用含式子表示出來,當(dāng)被框住的4個數(shù)之和等于418時,值是多少?

(2)被框住的4個數(shù)之和能否等于724?如果能,請求出此時x值;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在筆直的鐵路上A、B兩點相距25km,CD為兩村莊,DA=10kmCB=15km,DAABACBABB,現(xiàn)要在AB上建一個中轉(zhuǎn)站E,使得C、D兩村到E站的距離相等.求E應(yīng)建在距A多遠(yuǎn)處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩同學(xué)用兩枚質(zhì)地均勻的骰子作游戲,規(guī)則如下:每人隨機(jī)擲兩枚骰子一次(若擲出的兩枚骰子摞在一起,則重擲),點數(shù)和大的獲勝;點數(shù)和相同為平局. 根據(jù)上述規(guī)則,解答下列問題;
(1)隨機(jī)擲兩枚骰子一次,用列表法求點數(shù)和為8的概率;
(2)甲先隨機(jī)擲兩枚骰子一次,點數(shù)和是7,求乙隨機(jī)擲兩枚骰子一次獲勝的概率. (骰子:六個面分別有1、2、3、4、5、6個小圓點的立方塊.點數(shù)和:兩枚骰子朝上的點數(shù)之和)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為開展體育大課間活動,需要購買籃球與足球若干個.已知購買2個籃球和3個足球共需要380元;購買4個籃球和5個足球共需要700元.

(1)求購買一個籃球、一個足球各需多少元;

(2)若體育老師帶了8000元去購買這種籃球與足球共100個.由于數(shù)量較多,店主給出“一律打九折”的優(yōu)惠價,那么他最多能購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點O,OD恰為∠BOE的平分線.

(1)圖中∠BOC的補(bǔ)角是 把符合條件的角都填出來);

(2)若∠AOD=145°,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,OAC邊上的一個動點過點O作直線MNBC,設(shè)MNBCA的外角平分線CF于點FACB內(nèi)角平分線CEE

1求證:EO=FO;

2當(dāng)點O運動到何處時四邊形AECF是矩形?并證明你的結(jié)論;

3AC邊上存在點O,使四邊形AECF是正方形猜想ABC的形狀并證明你的結(jié)論。

查看答案和解析>>

同步練習(xí)冊答案