關(guān)于x的方程為x2+(m+2)x+2m-1=0.
(1)證明:方程有兩個(gè)不相等的實(shí)數(shù)根.
(2)是否存在實(shí)數(shù)m,使方程的兩個(gè)實(shí)數(shù)根互為相反數(shù)?若存在,求出m的值及兩個(gè)實(shí)數(shù)根;若不存在,請(qǐng)說(shuō)明理由.

(1)證明:△=(m+2)2-4(2m-1)=m2-4m+8=(m-2)2+4,
∵(m-2)2≥0,
∴(m-2)2+4>0,
∴方程有兩個(gè)不相等的實(shí)數(shù)根.

(2)存在實(shí)數(shù)m,使方程的兩個(gè)實(shí)數(shù)根互為相反數(shù).
由題知:x1+x2=-(m+2)=0,
解得:m=-2,
將m=-2代入x2+(m+2)x+2m-1=0,
解得:x=,
∴m的值為-2,方程的根為x=
分析:(1)運(yùn)用一元二次方程根的判別式,當(dāng)△>0,一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,要證明方程有兩個(gè)不相等的實(shí)數(shù)根,即只要證出,△>0即可.
(2)要使方程的兩個(gè)實(shí)數(shù)根互為相反數(shù),利用根與系數(shù)的關(guān)系,得出x1+x2=-=0,代入求出即可.
點(diǎn)評(píng):此題主要考查了一元二次方程根與系數(shù)的關(guān)系以及一元二次方程根的判別式,這種題型在中考中是熱點(diǎn)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的方程為x2+(m+2)x+2m-1=0.
(1)證明:方程有兩個(gè)不相等的實(shí)數(shù)根.
(2)是否存在實(shí)數(shù)m,使方程的兩個(gè)實(shí)數(shù)根互為相反數(shù)?若存在,求出m的值及兩個(gè)實(shí)數(shù)根;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用長(zhǎng)4米的鋁材制成一個(gè)矩形窗框,使它的面積為
3
4
平方米,若它的一邊長(zhǎng)為x米,根據(jù)題意列出關(guān)于x的方程為
x2-2x+
3
4
=0
x2-2x+
3
4
=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年江西省贛州市定南縣三中片區(qū)九年級(jí)數(shù)學(xué)全能競(jìng)賽試卷(解析版) 題型:解答題

關(guān)于x的方程為x2+(m+2)x+2m-1=0.
(1)證明:方程有兩個(gè)不相等的實(shí)數(shù)根.
(2)是否存在實(shí)數(shù)m,使方程的兩個(gè)實(shí)數(shù)根互為相反數(shù)?若存在,求出m的值及兩個(gè)實(shí)數(shù)根;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省莆田市下嶼中學(xué)九年級(jí)(上)階段質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

關(guān)于x的方程為x2+(m+2)x+2m-1=0.
(1)證明:方程有兩個(gè)不相等的實(shí)數(shù)根.
(2)是否存在實(shí)數(shù)m,使方程的兩個(gè)實(shí)數(shù)根互為相反數(shù)?若存在,求出m的值及兩個(gè)實(shí)數(shù)根;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案