【題目】如圖①、圖②,方格紙中的每個小正方形的邊長均為1,小正方形的頂點稱為格點,圖①和圖②中的點A、點B都是格點.分別在圖①、圖②中畫出格點C,并滿足下面的條件:
(1)在圖①中,使∠ABC=90°.此時AC的長度是 .
(2)在圖②中,使AB=AC.此時△ABC的邊AB上的高是 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個三位正整數(shù)n各數(shù)位上的數(shù)字重新排列(含n本身)后,得到新的三位數(shù)(a<c),在所有重新排列大的數(shù)中,當(dāng)|a+c﹣2b|最小時,我們稱是n的“天時數(shù)”,并規(guī)定F(n)=b2﹣ac.當(dāng)|a+c﹣2b|最大時,我們稱是n的“地利數(shù)”,并規(guī)定G(n)=ac﹣b2.并規(guī)定M(n)=是n的“人和數(shù)”,例如:215可以重新排列為125,152,215,因為|1+5﹣2×2|=2,|1+2﹣2×5|=7,|2+5﹣2×1|=5,且2<5<7,所以125是215的“天時數(shù)”F(125)=22﹣1×5=﹣1,152是215的“地利數(shù)”,G(152)=1×2﹣52=﹣23,M(215)=.
(1)計算:F(168),G(168);
(2)設(shè)三位自然數(shù)s=100x+50+y(1≤x≤9,1≤y≤9,且x,y均為正整數(shù)),交換其個位上的數(shù)字與百位上的數(shù)字得到t,若s﹣t=693,那么我們稱s為“厚積薄發(fā)數(shù)”;請求出所有“厚積薄發(fā)數(shù)”中M(s)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了豐富學(xué)生課余生活,計劃開設(shè)以下課外活動項目:A—版畫,B—機器人,C—航模,D—園藝種植.為了解學(xué)生最喜歡哪一種活動項目,隨機抽取了部分學(xué)生進(jìn)行調(diào)查(每位學(xué)生必須選且只能選一個項目),并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調(diào)查的學(xué)生共有 人;扇形統(tǒng)計圖中,選“D—園藝種植”的學(xué)生人數(shù)所占圓心角的度數(shù)是 °
(2)請你將條形統(tǒng)計圖補充完整;
(3)若該校學(xué)生總數(shù)為1000人,試估計該校學(xué)生中最喜歡“機器人”和最喜歡“航模”項目的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列7個事件中:(1)擲一枚硬幣,正面朝上.(2)從一副沒有大小王的撲克牌中抽出一張恰為黑桃.(3)隨意翻開一本有400頁的書,正好翻到第100頁.(4)天上下雨,馬路潮濕.(5)你能長到身高4米.(6)買獎券中特等大獎.(7)擲一枚正方體骰子,得到的點數(shù)<7.其中(將序號填入題中的橫線上即可)確定事件為________;不確定事件為________;不可能事件為________;必然事件為________;不確定事件中,發(fā)生可能性最大的是________,發(fā)生可能性最小的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,二次函數(shù)的圖象與x軸交于A(-2,0),B(4,0)兩點,且函數(shù)的最大值為9.
(1)求二次函數(shù)的解析式;
(2)設(shè)此二次函數(shù)圖象的頂點為C,與y軸交點為D,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△CDE都是等邊三角形,連接AD、BE,AD與BE交于點F.
(1)求證AD=BE;
(2)∠BFA= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點C為∠AOB內(nèi)一點.
(1)在OA上求作點D,在OB上求作點E,使△CDE的周長最小,請畫出圖形;(不寫做法,保留作圖痕跡)
(2)在(1)的條件下,若∠AOB=30°,OC=10,求△CDE周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為( )
A. 3 B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.
(1)求證:AE=BF;
(2)連接GB,EF,求證:GB∥EF;
(3)若AE=1,EB=2,求DG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com