【題目】利用圖象解一元二次方程x2-2x-1=0時,我們采用的一種方法是在直角坐標系中畫出拋物線y=x2和直線y=2x+1,兩圖象交點的橫坐標就是該方程的解.

(1)請再給出一種利用圖象求方程x2-2x-1=0的解的方法;

(2)已知函數(shù)y=x3的圖象(如圖),求方程x3-x-2=0的解(結(jié)果保留兩位有效數(shù)字).

【答案】(1)見解析(2)x≈1.5

【解析】

(1)由范例可得應把x2-2x-1=0進行整理,也可得到x2-1=2x,那么可得y=x2-1y=2x兩圖象交點的橫坐標就是該方程的解.

(2)把方程x3-x-2=0整理得x3=x+2,那么可得y=x3y=x+2兩圖象交點的橫坐標就是該方程的解.

解:(1)答案不唯一,如在直角坐標系中畫出拋物線yx2-1和直線y=2x,其交點的橫坐標就是方程的解.

(2)在圖中畫出直線yx+2,與函數(shù)yx3的圖象交于點B,得點B的橫坐標x≈1.5,

∴方程的解為x≈1.5.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣2x+4的圖象與x軸、y軸分別交于點A、B,點COA的中點,過點CCDOAC交一次函數(shù)圖象于點D,POB上一動點,則PC+PD的最小值為(  )

A.4B.C.2D.2+2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請閱讀下述材料:

下述形式的繁分數(shù)叫做有限連分數(shù),其中n是自然數(shù),a0是整數(shù),a1,a2a3,…,an是正整數(shù):

其中稱為部分商。

按照以下方式可將任何一個分數(shù)轉(zhuǎn)化為連分數(shù)的形式:,則;考慮的倒數(shù),有,從而;再考慮的倒數(shù),有,于是得到a的連分數(shù)展開式,它有4個部分商:3,1,3,3

可利用連分數(shù)來求二元一次不定方程的特殊解,以為例,首先將寫成連分數(shù)的形式,如上所示;其次,數(shù)部分商的個數(shù),本例是偶數(shù)個部分商(奇數(shù)情況請見下例);最后計算倒數(shù)第二個漸近分數(shù),從而是一個特解。

考慮不定方程,先將寫成連分數(shù)的形式:。

注意到此連分數(shù)有奇數(shù)個部分商,將之改寫為偶數(shù)個部分商的形式:

計算倒數(shù)第二個漸近分數(shù):,所以的一個特解。

對于分式,有類似的連分式的概念,利用將分數(shù)展開為連分數(shù)的方法,可以將分式展開為連分式。例如的連分式展開式如下,它有3個部分商: ;

再例如,,它有4個部分商:1,。

請閱讀上述材料,利用所講述的方法,解決下述兩個問題

1)找出兩個關(guān)于x的多項式pq,使得。

2)找出兩個關(guān)于x的多項式uv,使得。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一條拋物線與x軸相交于A,B兩點,其頂點P在折線C-D-E上移動,若點C,D,E的坐標分別為(-1,4),(3,4),(3,1),點B的橫坐標的最小值為1,則點A的橫坐標的最大值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上點表示數(shù),點表示數(shù)點表示數(shù),已知數(shù)是最小的正整數(shù),且、滿足

1 , , ;

2)若將數(shù)軸折疊,使得點與點重合,則點與數(shù) 表示的點重合;

3)點、、開始在數(shù)軸上運動,若點以每秒1個單位長度的速度向左運動,同時,點和點分別以每秒2個單位長度和4個單位長度的速度向右運動,假設(shè)秒鐘過后,若點與點之間的距離表示為,點與點之間的距離表示為,點與點之間的距離表示為,求、、的長(用含的式子表示);

4)在(3)的條件下,的值是否隨著時間的變化而改變?若改變,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:我們知道:點AB在數(shù)軸上分別表示有理數(shù)a、b,AB兩點之間的距離表示為AB,在數(shù)軸上AB兩點之間的距離AB=|a-b|.所以式子|x3|的幾何意義是數(shù)軸上表示有理數(shù)3的點與表示有理數(shù)x的點之間的距離.

根據(jù)上述材料,解答下列問題:

1)若|x3|=4,則x=______;

2)式子|x3|=|x+1|,則x=______;

3)若|x3|+|x+1|=9,借助數(shù)軸求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是某街區(qū)的平面示意圖,根據(jù)要求答題.

1)這幅圖的比例尺是( )

2)學校位于廣場的( )面(填東、南、西、北)( )千米處.

3)人民公園位于廣場的東偏南方向3千米處.在圖中標出它的位置.

4)廣場的西面1千米處,有一條商業(yè)街與人民路垂直,在圖中畫線表示商業(yè)街.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖中的五個半圓,鄰近的兩半圓相切,兩只小蟲同時出發(fā),以相同的速度從A點到B點,甲蟲沿ADA1、A1EA2、A2FA3、A3GB路線爬行,乙蟲沿ACB路線爬行,則下列結(jié)論正確的是( 。

A. 甲先到B B. 乙先到B C. 甲、乙同時到B D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】D、E分別是ABC兩邊AB、BC所在直線上的點,∠BDE+∠ACB180°DEAC,AD2BD.

(1) 如圖1,當點D、E分別在AB、CB的延長線上時,求證:BEBD

(2) 如圖2,當點D、E分別在AB、BC邊上時,BEBD存在怎樣的數(shù)量關(guān)系?請寫出你的結(jié)論,并證明

查看答案和解析>>

同步練習冊答案