(本小題滿(mǎn)分10分)

如圖14①至圖14④中,兩平行線(xiàn)ABCD音的距離均為6,點(diǎn)MAB上一定點(diǎn).

思考:如圖14①中,圓心為O的半圓形紙片在AB、CD之間(包括AB、CD),其直徑MN在AB上,MN=8,點(diǎn)P為半圓上一點(diǎn),設(shè)∠MOP=α,當(dāng)α=________度時(shí),點(diǎn)PCD的距離最小,最小值為_(kāi)___________.

探究一在圖14①的基礎(chǔ)上,以點(diǎn)M為旋轉(zhuǎn)中心,在ABCD之間順時(shí)針旋轉(zhuǎn)該半圓形紙片,直到不能再轉(zhuǎn)動(dòng)為止.如圖14②,得到最大旋轉(zhuǎn)角∠BMO=_______度,此時(shí)點(diǎn)NCD的距離是______________.

探究二將圖14①中的扇形紙片NOP按下面對(duì)α的要求剪掉,使扇形紙片MOP繞點(diǎn)MAB、CD之間順時(shí)針旋轉(zhuǎn).

⑴如圖14③,當(dāng)α=60°時(shí),求在旋轉(zhuǎn)過(guò)程中,點(diǎn)PCD的最小距離,并請(qǐng)指出旋轉(zhuǎn)角∠BMO的最大值:

⑵如圖14④,在扇形紙片MOP旋轉(zhuǎn)過(guò)程中,要保證點(diǎn)P能落在直線(xiàn)CD上,請(qǐng)確定α的取值范圍.

(參考數(shù)據(jù):sin49°=,cos41°=,tan37°=

            

 

解:思考   90,2.

探究一  30,2.

探究二、⑴由已知得的距離為4,∴當(dāng)時(shí),點(diǎn)的最大距離是4,從而點(diǎn)的最小距離為.

當(dāng)扇形之間旋轉(zhuǎn)到不能再轉(zhuǎn)時(shí),相切,此時(shí)旋轉(zhuǎn)角最大,的最大值為90°.

⑵如圖4,由探究一可知,點(diǎn)的切點(diǎn)時(shí),達(dá)到最大,即.此時(shí),延長(zhǎng)于點(diǎn),最大值為.

如圖5,當(dāng)點(diǎn)上且與距離最小時(shí),,達(dá)到最小,連接,作于點(diǎn),由垂徑定理,得,在中,=4,

,∵,∴最小為.

的取值范圍是.

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分10分)一個(gè)不透明的口袋里裝有紅、白、黃三種顏色的乒乓球(除顏色外其余都相同),其中白球有2個(gè),黃球有1個(gè).若從中任意摸出一個(gè)球,這個(gè)球是白球的概率為
(1)求口袋中紅球的個(gè)數(shù);
(2)把口袋中的球攪勻后摸出一個(gè)球,放回?cái)噭蛟倜龅诙䝼(gè)球,求摸到的兩個(gè)球是一紅一白的概率.(請(qǐng)結(jié)合樹(shù)狀圖或列表加以解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年河北省中考模擬試卷數(shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)分10分)
如圖,在平面直角坐標(biāo)系中,直線(xiàn)L:y=-2x-8分別與x軸、y軸相交于A、B兩點(diǎn),點(diǎn)P(0,k)是y軸的負(fù)半軸上的一個(gè)動(dòng)點(diǎn),以P為圓心,3為半徑作⊙P。

(1)連結(jié)PA,若PA=PB,試判斷⊙P與X軸的位置關(guān)系,并說(shuō)明理由;
(2)當(dāng)K為何值時(shí),以⊙P與直線(xiàn)L的兩個(gè)交點(diǎn)和圓心P為頂點(diǎn)的三角形是正三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年四川省鹽源縣民族中學(xué)中考模擬試題數(shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)分10分)如圖,在等腰梯形ABCD中,ADBC,AB=DC=5,AD=6,BC=12.動(dòng)點(diǎn)PD點(diǎn)出發(fā)沿DC以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)QC點(diǎn)出發(fā)沿CB以每秒2個(gè)單位的速度向B點(diǎn)運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),當(dāng)P點(diǎn)到達(dá)C點(diǎn)時(shí),Q點(diǎn)隨之停止運(yùn)動(dòng).

【小題1】(1)求梯形ABCD的面積;
【小題2】(2)當(dāng)P點(diǎn)離開(kāi)D點(diǎn)幾秒后,PQ//AB;
【小題3】(3)當(dāng)P、QC三點(diǎn)構(gòu)成直角三角形時(shí),求點(diǎn)P從點(diǎn)D運(yùn)動(dòng)的時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012年河北省衡水市五校九年級(jí)第三次聯(lián)考數(shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)分10分)如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B、C、P的坐標(biāo)分別為(0,1)、(-1,0)、(1,0)、(-1,-1)。

【小題1】(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的表達(dá)式;
【小題2】(2)以P為位似中心,將△ABC放大,使得放大后的△A1B1C1
與△OAB對(duì)應(yīng)線(xiàn)段的比為3:1,請(qǐng)?jiān)谟覉D網(wǎng)格中畫(huà)出放大
后的△A1B1C1;(所畫(huà)△A1B1C1與△ABC在點(diǎn)P同側(cè));
【小題3】(3)經(jīng)過(guò)A1、B1、C1三點(diǎn)的拋物線(xiàn)能否由(1)中的拋物線(xiàn)平
移得到?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆河南省商丘市九年級(jí)上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)分10分)
在圖1至圖3中,直線(xiàn)MN與線(xiàn)段AB相交
于點(diǎn)O,∠1 = ∠2 = 45°.

【小題1】(1)如圖1,若AO OB,請(qǐng)寫(xiě)出AOBD
的數(shù)量關(guān)系和位置關(guān)系;
【小題2】(2)將圖1中的MN繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到
圖2,其中AO = OB
求證:AC BD,AC ⊥ BD
【小題3】(3)將圖2中的OB拉長(zhǎng)為AOk倍得到
圖3,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案