如圖,已知等邊△ABC中,BD=CE,AD與BE相交于點(diǎn)P,則∠APE的度數(shù)是 度.
60 度.
【考點(diǎn)】全等三角形的判定與性質(zhì);等邊三角形的性質(zhì).
【專題】幾何圖形問題.
【分析】根據(jù)題目已知條件可證△ABD≌△BCE,再利用全等三角形的性質(zhì)及三角形外角和定理求解.
【解答】解:∵等邊△ABC,
∴∠ABD=∠C,AB=BC,
在△ABD與△BCE中,,
∴△ABD≌△BCE(SAS),
∴∠BAD=∠CBE,
∵∠ABE+∠EBC=60°,
∴∠ABE+∠BAD=60°,
∴∠APE=∠ABE+∠BAD=60°,
∴∠APE=60°.
故答案為:60.
【點(diǎn)評】本題利用等邊三角形的性質(zhì)來為三角形全等的判定創(chuàng)造條件,是中考的熱點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知△ABC,按如下步驟作圖:①以A為圓心,AB長為半徑畫弧;②以C為圓心,CB長為半徑畫弧,兩弧相交于點(diǎn)D;③連結(jié)AD,CD.則△ABC≌△ADC的依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于N,交AC于M.
(1)若∠B=70°,則∠NMA的度數(shù)是__________;
(2)探究∠B與∠NMA的關(guān)系,并說明理由;
(3)連接MB,若AB=8cm,△MBC的周長是14cm.
①求BC的長;
②在直線MN上是否存在點(diǎn)P,使PB+CP的值最?若存在,標(biāo)出點(diǎn)P的位置并求PB+CP的最小值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC,∠C=90°,∠B=15°,AB的中垂線DE交BC于D,E為垂足,若BD=10cm,則AC等于( )
A.10cm B.8cm C.5cm D.2.5cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
.山地自行車越來越受到中學(xué)生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車去年銷售總額為5萬元,今年每輛銷售價(jià)比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.
(1)今年A型車每輛售價(jià)多少元?
(2)該車行計(jì)劃新進(jìn)一批A型車和新款B型車共60輛,要使這批車獲利不少于33000元,A型車至多進(jìn)多少輛?A,B兩種型號車的進(jìn)貨和銷售價(jià)格如表:
| A型車 | B型車 |
進(jìn)貨價(jià)格(元) | 1100 | 1400 |
銷售價(jià)格(元) | 今年的銷售價(jià)格 | 2000 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在以點(diǎn)O為原點(diǎn)的直角坐標(biāo)系中,一次函數(shù)y=﹣x+1的圖象與x軸交于A,與y軸交于點(diǎn)B,點(diǎn)C在第二象限內(nèi)且為直線AB上一點(diǎn),OC=AB,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖所示,AB=AC,要說明△ADC≌△AEB,需添加的條件不能是( )
A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com