(2012•攀枝花)如圖,我漁政310船在南海海面上沿正東方向勻速航行,在A地觀測到我漁船C在東北方向上的我國某傳統(tǒng)漁場.若漁政310船航向不變,航行半小時后到達B處,此時觀測到我漁船C在北偏東30°方向上.問漁政310船再航行多久,離我漁船C的距離最近?(假設我漁船C捕魚時移動距離忽略不計,結果不取近似值.)
分析:過點C作AB的垂線,設垂足為D.由題易知∠CAB=45°,∠CBD=60°.先在Rt△BCD中,得到CD=
3
BD,再在Rt△ACD中,得到CD=AD,據(jù)此得出
BD
AB
=
3
+1
2
,然后根據(jù)勻速航行的漁船其時間之比等于路程之比,從而求出漁船行駛BD的路程所需的時間.
解答:解:作CD⊥AB交AB的延長線于點D.
∵A地觀測到漁船C在東北方向上,漁船C在北偏東30°方向上,
∴∠CAB=45°,∠CBD=60°.
在Rt△BCD中,∵∠CDB=90°,∠CBD=60°,
∴CD=
3
BD.
在Rt△ACD中,∵∠CDA=90°,∠CAD=45°,
∴CD=AD,
3
BD=AB+BD,
BD
AB
=
1
3
-1
=
3
+1
2

設漁政310船再航行t分鐘,離我漁船C的距離最近,
t
30
=
3
+1
2
,
解得t=15
3
+15.
答:漁政310船再航行(15
3
+15)分鐘,離我漁船C的距離最近.
點評:本題主要考查了解直角三角形的應用-方向角問題,正確理解方向角的定義是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•攀枝花)如圖,在平面直角坐標系xOy中,四邊形ABCD是菱形,頂點A、C、D均在坐標軸上,且AB=5,sinB=
45

(1)求過A、C、D三點的拋物線的解析式;
(2)記直線AB的解析式為y1=mx+n,(1)中拋物線的解析式為y2=ax2+bx+c,求當y1<y2時,自變量x的取值范圍;
(3)設直線AB與(1)中拋物線的另一個交點為E,P點為拋物線上A、E兩點之間的一個動點,當P點在何處時,△PAE的面積最大?并求出面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•攀枝花)先化簡,再求值:(x+1-
3
x-1
x2-4x+4
x-1
,其中x滿足方程:x2+x-6=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•攀枝花)下列說法中,錯誤的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•攀枝花)底面半徑為1,高為
3
的圓錐的側面積等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•攀枝花)某學校為了解八年級學生的課外閱讀情況,鐘老師隨機抽查部分學生,并對其暑假期間的課外閱讀量進行統(tǒng)計分析,繪制成如圖所示,但不完整的統(tǒng)計圖.根據(jù)圖示信息,解答下列問題:

(1)求被抽查學生人數(shù)及課外閱讀量的眾數(shù);
(2)求扇形統(tǒng)計圖匯總的a、b值;
(3)將條形統(tǒng)計圖補充完整;
(4)若規(guī)定:假期閱讀3本以上(含3本)課外書籍者為完成假期作業(yè),據(jù)此估計該校600名學生中,完成假期作業(yè)的有多少人?

查看答案和解析>>

同步練習冊答案