【題目】在ABCD中,點E,F(xiàn)分別在AB,CD上,∠ADE=∠CBF.

(1)求證:AE=CF;
(2)若DF=BF,求證:EF⊥BD.

【答案】
(1)證明:∵四邊形ABCD為平行四邊形,

∴AD=BC,∠A=∠C,

在△ADE和△CBF中, ,

∴△ADE≌△CBF(ASA),

∴AE=CF;


(2)證明:∵AE=CF,DF=BF,

∴DF=BE,∵DF∥BE,

∴四邊形DEBF是平行四邊形,

∴四邊形DEBF是菱形,

∴EF⊥BD.


【解析】(1)根據(jù)全等三角形的判定定理證明△ADE≌△CBF,即可證得結(jié)論;(2)證明四邊形DEBF是菱形,即可得出結(jié)論.
【考點精析】通過靈活運用平行四邊形的性質(zhì),掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中.矩形OABC的對角線OB,AC相交于點D,且BE∥AC,AE∥OB.如果OA=3,OC=2,則經(jīng)過點E的反比例函數(shù)解析式為(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)y=2xm2的圖象,下列說法不正確的是( 。

A. 開口向下B. 對稱軸是x=mC. 最大值為0D. y軸不相交

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,M為邊AB上的點,且AM= BM,延長MB至點E,使ME=MC,連接EC,則點M到直線CE的距離是(

A.2
B.
C.5
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把二次函數(shù)yx22x+3配方成y=(xm2+k的形式,以下結(jié)果正確的是( 。

A. y=﹣(x12+4B. y=(x12+2

C. y=(x+12+2D. y=(x22+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人共同解方程組 , 由于甲看錯了方程①中的a,得到方程組的解為;乙看錯了方程②中的b,得到方程組的解為 , 試計算a2012+(b)2013的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是邊長為4cm的等邊三角形,動點P從點A出發(fā),以2cm/s的速度沿ACB運動,到達(dá)B點即停止運動,PDABAB于點D.設(shè)運動時間為xs),ADP的面積為ycm2),則yx的函數(shù)圖象正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列表格是二次函數(shù)y=ax2+bx+c(d≠0)的自變量x與函數(shù)y的一些對應(yīng)值,由此可以判斷方程ax2+bx+c=0(a≠0)的一個根在(

x

6.17

6.18

6.19

6.20

y=ax2+bx+c

﹣0.03

﹣0.01

0.02

0.06


A.﹣0.01﹣0.02之間
B.0.02﹣0.06之間
C.6.17﹣6.18之間
D.6.18﹣6.19之間

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A(3,3)和點B是平面內(nèi)兩點,且它們關(guān)于直線x=2軸對稱,則點B的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊答案