某科研機構(gòu)對我區(qū)400戶有兩個孩子的家庭進行了調(diào)查,得到了
表格中的數(shù)據(jù),其中(男,女)代表第一個孩子是男孩,第二個孩子
是女孩,其余類推.由數(shù)據(jù),請估計我區(qū)兩個孩子家庭中男孩與女
孩的人數(shù)比為 : .
類別 | 數(shù)量(戶) |
(男,男) | 101 |
(男,女) | 99 |
(女,男) | 116 |
(女,女) | 84 |
合計 | 400 |
科目:初中數(shù)學 來源: 題型:
如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于點C,AC平分∠DAB.
(1)試說明:AD⊥DC;
(2)若AD=1,AC=,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
我區(qū)有15所中學,其中九年級學生共有3000名.為了了解
我區(qū)九年級學生的體重情況,請你運用所學的統(tǒng)計知識,將解決上述問題要經(jīng)歷的幾個重
要步驟進行排序.①收集數(shù)據(jù);②設(shè)計調(diào)查問卷;③用樣本估計總體;④整理數(shù)據(jù);
⑤分析數(shù)據(jù).則正確的排序為 .(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知:如圖,在正方形ABCD中,點E、F在對角線BD上,且BF=DE.
(1)求證:四邊形AECF是菱形.
(2)若AB=2,BF=1,求四邊形AECF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
問題提出
平面內(nèi)不在同一條直線上的三點確定一個圓.那么平面內(nèi)的四點(任意三點均不在同一
直線上),能否在同一個圓呢?
初步思考
設(shè)不在同一條直線上的三點A、B、C確定的圓為⊙O.
⑴當C、D在線段AB的同側(cè)時,
如圖①,若點D在⊙O上,此時有∠ACB=∠ADB,理由是 ;
如圖②,若點D在⊙O內(nèi),此時有∠ACB ∠ADB;
如圖③,若點D在⊙O外,此時有∠ACB ∠ADB.(填“=”、“>”或“<”);
由上面的探究,請直接寫出A、B、C、D四點在同一個圓上的條件: .
類比學習
(2)仿照上面的探究思路,請?zhí)骄浚寒?i>C、D在線段AB的異側(cè)時的情形.
此時有 , 此時有 , 此時有 .
由上面的探究,請用文字語言直接寫出A、B、C、D四點在同一個圓上的條件: .
拓展延伸
(3)如何過圓上一點,僅用沒有刻度的直尺,作出已知直徑的垂線?
已知:如圖,AB是⊙O的直徑,點C在⊙O上.
求作:CN⊥AB.
作法:①連接CA,CB;
②在上任取異于B、C的一點D,連接DA,DB;
③DA與CB相交于E點,延長AC、BD,交于F點;
④連接F、E并延長,交直徑AB于M;
⑤連接D、M并延長,交⊙O于N.連接CN.
則CN⊥AB.
請按上述作法在圖④中作圖,并說明CN⊥AB的理由.(提示:可以利用(2)中的結(jié)論)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
投擲一枚質(zhì)地均勻的正方體骰子.
(1)下列說法中正確的有 .(填序號)
①向上一面點數(shù)為1點和3點的可能性一樣大;
②投擲6次,向上一面點數(shù)為1點的一定會出現(xiàn)1次;
③連續(xù)投擲2次,向上一面的點數(shù)之和不可能等于13.
(2)如果小明連續(xù)投擲了10次,其中有3次出現(xiàn)向上一面點數(shù)為6點,這時小明說:投擲正方體骰子,向上一面點數(shù)為6點的概率是.你同意他的說法嗎?說說你的理由.
(3)為了估計投擲正方體骰子出現(xiàn)6點朝上的概率,小亮采用轉(zhuǎn)盤來代替骰子做實驗.下圖是一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,請你將轉(zhuǎn)盤分為2個扇形區(qū)域,分別涂上紅、白兩種顏色,使得轉(zhuǎn)動轉(zhuǎn)盤,當轉(zhuǎn)盤停止轉(zhuǎn)動后,指針落在紅色區(qū)域的概率與投擲正方體骰子出現(xiàn)6點朝上的概率相同.
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com