【題目】一幢樓的樓頂端掛著一幅長(zhǎng)10米的宣傳條幅AB,某數(shù)學(xué)興趣小組在一次活動(dòng)中,準(zhǔn)備測(cè)量該樓的高度,但被建筑物FGHM擋住,不能直接到達(dá)樓的底部,他們?cè)邳c(diǎn)D處測(cè)得條幅頂端A的仰角∠CDA=45°,向后退8米到E點(diǎn),測(cè)得條幅底端B的仰角∠CEB=30°(點(diǎn)C,D,E在同一直線上,EC⊥AC).請(qǐng)你根據(jù)以上數(shù)據(jù),幫助該興趣小組計(jì)算樓高AC(結(jié)果精確到0.01米,參考數(shù)據(jù):≈1.732,≈1.414).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃購(gòu)買(mǎi)A,B兩種型號(hào)的機(jī)器人搬運(yùn)材料.已知A型機(jī)器人比B型機(jī)器人每小時(shí)多搬運(yùn)30kg材料,且A型機(jī)器人搬運(yùn)1000kg材料所用的時(shí)間與B型機(jī)器人搬運(yùn)800kg材料所用的時(shí)間相同.
(1)求A,B兩種型號(hào)的機(jī)器人每小時(shí)分別搬運(yùn)多少材料;
(2)該公司計(jì)劃采購(gòu)A,B兩種型號(hào)的機(jī)器人共20臺(tái),要求每小時(shí)搬運(yùn)材料不得少于2800kg,則至少購(gòu)進(jìn)A型機(jī)器人多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GE⊥BC,垂足為點(diǎn)E,GF⊥CD,垂足為點(diǎn)F.
(1)證明:四邊形CEGF是正方形;
(2)探究與證明:
將正方形CEGF繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)α角(0°<α<45°),如圖2所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)拓展與運(yùn)用:
正方形CEGF繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)α角(0°<α<45°),如圖3所示,當(dāng)B,E,F三點(diǎn)在一條直線上時(shí),延長(zhǎng)CG交AD于點(diǎn)H,若AG=6,GH=2,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E為AB中點(diǎn),以BE為邊作正方形BEFG,邊EF交CD于點(diǎn)H,在邊BE上取點(diǎn)M使BM=BC,作MN∥BG交CD于點(diǎn)L,交FG于點(diǎn)N.歐兒里得在《幾何原本》中利用該圖解釋了.現(xiàn)以點(diǎn)F為圓心,FE為半徑作圓弧交線段DH于點(diǎn)P,連結(jié)EP,記△EPH的面積為S1,圖中陰影部分的面積為S2.若點(diǎn)A,L,G在同一直線上,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段 AB 經(jīng)過(guò)⊙O 的圓心, AC , BD 分別與⊙O 相切于點(diǎn) C ,D .若 AC =BD = 4 ,∠A=45°,則弧CD的長(zhǎng)度為( )
A.πB.2πC.2πD.4π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=kx+b經(jīng)過(guò)點(diǎn)A(0,2),B(﹣4,0)和拋物線y=x2.
(1)求直線的解析式;
(2)將拋物線y=x2沿著x軸向右平移,平移后的拋物線對(duì)稱(chēng)軸左側(cè)部分與y軸交于點(diǎn)C,對(duì)稱(chēng)軸右側(cè)部分拋物線與直線y=kx+b交于點(diǎn)D,連接CD,當(dāng)CD∥x軸時(shí),求平移后得到的拋物線的解析式;
(3)在(2)的條件下,平移后得到的拋物線的對(duì)稱(chēng)軸與x軸交于點(diǎn)E,P為該拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作拋物線對(duì)稱(chēng)軸的垂線,垂足為Q,是否存在這樣的點(diǎn)P,使以點(diǎn)E,P,Q為頂點(diǎn)的三角形與△AOB相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C將線段AB分成兩部分,若AC2=BCAB(AC>BC),則稱(chēng)點(diǎn)C為線段AB的黃金分割點(diǎn).某數(shù)學(xué)興趣小組在進(jìn)行拋物線課題研究時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金拋物線”,類(lèi)似地給出“黃金拋物線”的定義:若拋物線y=ax2+bx+c,滿足b2=ac(b≠0),則稱(chēng)此拋物線為黃金拋物線.
(Ⅰ)若某黃金拋物線的對(duì)稱(chēng)軸是直線x=2,且與y軸交于點(diǎn)(0,8),求y的最小值;
(Ⅱ)若黃金拋物線y=ax2+bx+c(a>0)的頂點(diǎn)P為(1,3),把它向下平移后與x軸交于A(+3,0),B(x0,0),判斷原點(diǎn)是否是線段AB的黃金分割點(diǎn),并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠MON=120°,點(diǎn)A,B分別在OM,ON上,且OA=OB=,將射線OM繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OM′,旋轉(zhuǎn)角為α(且),作點(diǎn)A關(guān)于直線OM′的對(duì)稱(chēng)點(diǎn)C,畫(huà)直線BC交于OM′與點(diǎn)D,連接AC,AD.有下列結(jié)論:
有下列結(jié)論:
①∠BDO + ∠ACD = 90°;
②∠ACB 的大小不會(huì)隨著的變化而變化;
③當(dāng) 時(shí),四邊形OADC為正方形;
④面積的最大值為.
其中正確的是________________.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=kx+b(k<0),經(jīng)過(guò)點(diǎn)(6,0),且與坐標(biāo)軸圍成的三角形的面積是9,與函數(shù)y=(x>0)的圖象G交于A,B兩點(diǎn).
(1)求直線的表達(dá)式;
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫作整點(diǎn).記圖象G在點(diǎn)A、B之間的部分與線段AB圍成的區(qū)域(不含邊界)為W.
①當(dāng)m=2時(shí),直接寫(xiě)出區(qū)域W內(nèi)的整點(diǎn)的坐標(biāo) ;
②若區(qū)域W內(nèi)恰有3個(gè)整數(shù)點(diǎn),結(jié)合函數(shù)圖象,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com