【題目】如圖,在△ABC中,AE平分∠BACBC于點(diǎn)E,DAB邊上一動點(diǎn),連接CDAE于點(diǎn)P,連接BP.已知AB =6cm,設(shè)B,D兩點(diǎn)間的距離為xcm,B,P兩點(diǎn)間的距離為y1cmA,P兩點(diǎn)間的距離為y2cm

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是小明的探究過程,請補(bǔ)充完整:

1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了y1,x的幾組對應(yīng)值:

x/cm

0

1

2

3

4

5

6

y1/cm

2.49

2.64

2.88

3.25

3.80

4.65

6.00

y2/cm

4.59

4.24

3.80

3.25

2.51

0.00

2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(diǎn)(xy1),(x,),并畫出函數(shù)y1,的圖象;

3)結(jié)合函數(shù)圖象,回答下列問題:

①當(dāng)AP=2BD時(shí),AP的長度約為 cm;

②當(dāng)BP平分∠ABC時(shí),BD的長度約為 cm

【答案】11.5;(2)詳見解析;(3)答案不唯一,如:①3.86;②3

【解析】

1)用光滑的曲線連接y2圖象現(xiàn)有的點(diǎn),在圖象上,測量出x=5時(shí),y的值即可;
2)描點(diǎn)連線即可繪出函數(shù)圖象;
3)①當(dāng)AP=2BD時(shí),即y2=2x,在圖象上畫出直線y=2x,該圖象與y2的交點(diǎn)即為所求;
②從表格數(shù)據(jù)看,當(dāng)x=3時(shí),y1=y2=3.25,故當(dāng)BP平分∠ABC時(shí),此時(shí)點(diǎn)P是△ABC的內(nèi)心,故點(diǎn)DAB的中點(diǎn),即可求解.

解:(1)根據(jù)測量結(jié)果得到:

x/cm

0

1

2

3

4

5

6

y1/cm

2.49

2.64

2.88

3.25

3.80

4.65

6.00

y2/cm

4.59

4.24

3.80

3.25

2.51

1.5

0.00


2)畫出函數(shù)的圖象;

3)①當(dāng)AP=2BD時(shí),即y2=2x,
在圖象上畫出直線y=2x,該圖象與y2的交點(diǎn)即為所求,即圖中空心點(diǎn)所示,

空心點(diǎn)的縱坐標(biāo)為3.86,
②從表格數(shù)據(jù)看,當(dāng)x=3時(shí),y1=y2=3.25,
即點(diǎn)DAB中點(diǎn)時(shí),y1=y2,即此時(shí)點(diǎn)PAB的中垂線上,則點(diǎn)CAB的中垂線上,則△ABC為等腰三角形,
故當(dāng)BP平分∠ABC時(shí),此時(shí)點(diǎn)P是△ABC的內(nèi)心,故點(diǎn)DAB的中點(diǎn),

故答案可以為:①3.86;②3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個(gè)芭蕾舞團(tuán)演員的身高(單位:cm)如下表:

164

164

165

165

166

166

167

167

163

163

165

165

166

166

168

168

兩組芭蕾舞團(tuán)演員身高的方差較小的是______.(填

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖,將直角的頂點(diǎn)E放在正方形ABCD的對角線AC上,使角的一邊交CD于點(diǎn)F,另一邊交CB或其延長線于點(diǎn)G,求的值;

2)如圖,將(1)中的正方形ABCD改成矩形ABCD,其他條件不變.若ABm,BCn,試求的值;

3)如圖,將直角頂點(diǎn)E放在矩形ABCD的對角線交點(diǎn),EFEG分別交CDCB于點(diǎn)F、G,且EC平分∠FEG.若AB2,BC4,直接寫出EG、EF 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)白色小正方形個(gè)數(shù)按等于1,2,3,時(shí)的某種規(guī)律增加時(shí),由白色小正方形和黑色小正方形組成的圖形分別如圖所示,則第個(gè)圖形中白色小正方形和黑色小正方形的個(gè)數(shù)總和等于______.(用表示,是正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對某地互聯(lián)網(wǎng)行業(yè)從業(yè)情況進(jìn)行調(diào)查統(tǒng)計(jì),得到當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)從業(yè)人員年齡分布統(tǒng)計(jì)圖和當(dāng)?shù)?/span>90后從事互聯(lián)網(wǎng)行業(yè)崗位分布統(tǒng)計(jì)圖:

互聯(lián)網(wǎng)行業(yè)從業(yè)人員年齡分布統(tǒng)計(jì)圖 90后從事互聯(lián)網(wǎng)行業(yè)崗位分布圖

對于以下四種說法,你認(rèn)為正確的是_____ (寫出全部正確說法的序號)

①在當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)從業(yè)人員中,90后人數(shù)占總?cè)藬?shù)的一半以上

②在當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)從業(yè)人員中,80前人數(shù)占總?cè)藬?shù)的13%

③在當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)中,從事技術(shù)崗位的90后人數(shù)超過總?cè)藬?shù)的20%

④在當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)中,從事設(shè)計(jì)崗位的90后人數(shù)比80前人數(shù)少

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某人開車從家出發(fā)去植物園游玩,設(shè)汽車行駛的路程為S(千米),所用時(shí)間為t(分),St之間的函數(shù)關(guān)系如圖所示.若他早上8點(diǎn)從家出發(fā),汽車在途中停車加油一次,則下列描述中,不正確的是( )

A.汽車行駛到一半路程時(shí),停車加油用時(shí)10分鐘

B.汽車一共行駛了60千米的路程,上午9點(diǎn)5分到達(dá)植物園

C.加油后汽車行駛的速度為60千米/時(shí)

D.加油后汽車行駛的速度比加油前汽車行駛的速度快

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AE平分∠BACBC于點(diǎn)EDAB邊上一動點(diǎn),連接CDAE于點(diǎn)P,連接BP.已知AB =6cm,設(shè)B,D兩點(diǎn)間的距離為xcm,B,P兩點(diǎn)間的距離為y1cm,A,P兩點(diǎn)間的距離為y2cm

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù)y1y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是小明的探究過程,請補(bǔ)充完整:

1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了y1,x的幾組對應(yīng)值:

x/cm

0

1

2

3

4

5

6

y1/cm

2.49

2.64

2.88

3.25

3.80

4.65

6.00

y2/cm

4.59

4.24

3.80

3.25

2.51

0.00

2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(diǎn)(xy1),(x),并畫出函數(shù)y1的圖象;

3)結(jié)合函數(shù)圖象,回答下列問題:

①當(dāng)AP=2BD時(shí),AP的長度約為 cm

②當(dāng)BP平分∠ABC時(shí),BD的長度約為 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某制藥廠需要緊急生產(chǎn)一批能有效緩解新冠肺炎的藥品,要求必須在12天(含12天)內(nèi)完成.為了加快生產(chǎn),車間采取工人加班,機(jī)器不停的生產(chǎn)方式,這樣每天藥品的產(chǎn)量(噸)是時(shí)間(天)的一次函數(shù),且滿足如下表中所對應(yīng)的數(shù)量關(guān)系.由于機(jī)器負(fù)荷運(yùn)轉(zhuǎn)產(chǎn)生損耗,平均生產(chǎn)每噸藥品的成本(元)與時(shí)間(天)的關(guān)系滿足如圖所示的函數(shù)圖象.

時(shí)間(天)

2

4

每天產(chǎn)量(噸)

24

28

1)求藥品每天的產(chǎn)量(噸)與時(shí)間(天)之間的函數(shù)關(guān)系式;

2)當(dāng)時(shí),直接寫出(元)與時(shí)間(天)的函數(shù)關(guān)系是 ;

3)若這批藥品的價(jià)格為1400/噸,每天的利潤設(shè)為元,求哪一天的利潤最高,最高利潤是多少?(利潤售價(jià)成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,,,上一動點(diǎn),過的垂線交,將折疊得到,延長,連接

(1)求證:

(2)當(dāng)時(shí),證明是等腰三角形;

(3),,求的長.

查看答案和解析>>

同步練習(xí)冊答案