18.如圖,正方形ABCD,點(diǎn)E在AD上,將△CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至△CFG,點(diǎn)F,G分別為點(diǎn)D,E旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn),連接EG,DB,DF,DB與CE交于點(diǎn)M,DF與CG交于點(diǎn)N.
(1)求證BM=DN;
(2)直接寫(xiě)出圖中已經(jīng)存在的所有等腰直角三角形.

分析 (1)根據(jù)正方形的性質(zhì)得∠DCB=90°,CD=CB,再根據(jù)旋轉(zhuǎn)的性質(zhì)得CF=CD,∠ECG=∠DCF=90°,則可判斷△CDF為等腰直角三角形,所以∠CDF=∠CFD=45°,然后證明△BCM≌△DCN,則BM=DN;
(2)根據(jù)正方形的性質(zhì)可判斷△ABD和△BCD為等腰直角三角形,根據(jù)旋轉(zhuǎn)的性質(zhì)可判斷△CDF和△ECG為等腰直角三角形,然后判斷△BDF為腰直角三角形.

解答 (1)證明:∵四邊形ABCD為正方形,
∴∠DCB=90°,CD=CB,
∵△CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至△CFG,
∴CF=CD,∠ECG=∠DCF=90°,
∴△CDF為等腰直角三角形,
∴∠CDF=∠CFD=45°,
∵∠BCM+∠DCE=90°,∠DCN+∠DCE=90°,
∴∠BCM=∠DCN,
∵∠CBM=$\frac{1}{2}$∠ABC=45°,
∴∠CBM=∠CDN,
在△BCM和△DCN中
$\left\{\begin{array}{l}{∠MBC=∠NDC}\\{CB=CD}\\{∠BCM=∠CDN}\end{array}\right.$,
∴△BCM≌△DCN,
∴BM=DN;
(2)解:∵四邊形ABCD為正方形,
∴△ABD和△BCD為等腰直角三角形;
由(1)得△CDF為等腰三角形;
∵△CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至△CFG,
∴CE=CG,∠ECG=90°,
∴△ECG為等腰直角三角形;
∵△CBD和△CFD為等腰直角三角形;
∴△BDF為等腰直角三角形.

點(diǎn)評(píng) 本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線(xiàn)段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等腰直角三角形的判定方法和正方形的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知P(a,3)和Q(4,b)關(guān)于x軸對(duì)稱(chēng),則(a+b)2016的值為( 。
A.1B.-1C.72016D.-72016

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下面各組的兩個(gè)比不能組成比例的是( 。
A.8:7和16:14B.0.6:0.2和3:1C.19:110和10:9D.0.2:1.2和$\frac{2}{5}$:2.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,用吸管吸易拉罐內(nèi)的飲料時(shí),吸管與易拉罐的上、下底面所形成的角分別是∠1和∠2,若∠1=110°,則∠2=70°.(易拉罐的上下底面互相平行)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖,在△ABC中,點(diǎn)D是BC邊上的動(dòng)點(diǎn)(不與點(diǎn)B、C重合),點(diǎn)E是AB邊上的動(dòng)點(diǎn)(不與點(diǎn)A、B重合),則當(dāng)滿(mǎn)足條件∠A=∠BDE(答案不唯一)時(shí),△ABC與△DEB相似(寫(xiě)出一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

3.計(jì)算$\sqrt{\frac{1}{2}}×\sqrt{16}$的結(jié)果為2$\sqrt{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.飛機(jī)著陸后滑行的距離s(單位:米)關(guān)于滑行的時(shí)間t(單位:秒)的函數(shù)解析式是s=60t-1.5t2,則飛機(jī)著陸后從開(kāi)始滑行到完全停止所用的時(shí)間是20秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

7.計(jì)算(14m3-7m2+m)÷7m=2m2-m+$\frac{1}{7}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若關(guān)于x的一元二次方程x2+2(k-1)x+k2-1=0有實(shí)數(shù)根,則k的取值范圍是k≤1.

查看答案和解析>>

同步練習(xí)冊(cè)答案