【題目】某工廠有甲種原料130kg,乙種原料144kg.現(xiàn)用這兩種原料生產(chǎn)出A,B兩種產(chǎn)品共30件.已知生產(chǎn)每件A產(chǎn)品需甲種原料5kg,乙種原料4kg,且每件A產(chǎn)品可獲利700元;生產(chǎn)每件B產(chǎn)品需甲種原料3kg,乙種原料6kg,且每件B產(chǎn)品可獲利900元.設(shè)生產(chǎn)A產(chǎn)品x(產(chǎn)品件數(shù)為整數(shù)件),根據(jù)以上信息解答下列問題:

1)生產(chǎn)AB兩種產(chǎn)品的方案有哪幾種;

2)寫出(1)中利潤最大的方案,并求出最大利潤.

【答案】1)有三種方案:方案一:A產(chǎn)品18件,B產(chǎn)品12件;方案二:A產(chǎn)品19件,B產(chǎn)品11件;方案三:A產(chǎn)品20件,B產(chǎn)品10件;(2)利潤最大的方案是方案一:A產(chǎn)品18件,B產(chǎn)品12件,最大利潤為23400元.

【解析】

1)根據(jù)兩種產(chǎn)品所需要的甲、乙兩種原料列出不等式組,然后求解即可;
2)設(shè)總利潤為y,根據(jù)總利潤等于兩種產(chǎn)品的利潤之和求出函數(shù)關(guān)系式,然后根據(jù)一次函數(shù)的增減性判斷即可.

1)根據(jù)題意得: ,

解得:18≤x≤20

x是正整數(shù),∴x=18、19、20

共有三種方案:

方案一:A產(chǎn)品18件,B產(chǎn)品12件,

方案二:A產(chǎn)品19件,B產(chǎn)品11件,

方案三:A產(chǎn)品20件,B產(chǎn)品10件;

2)設(shè)總利潤為y,

根據(jù)題意得:y=700x+900(30x)=200x+27000

,

yx的增大而減小,

x=18時,利潤有最大值,是﹣200×18+27000=23400元.

答:利潤最大的方案是方案一:A產(chǎn)品18件,B產(chǎn)品12件,最大利潤為23400元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過天橋,有關(guān)部門決定降低坡度,使新坡面的坡度為1:

(1)求新坡面的坡角a;
(2)原天橋底部正前方8米處(PB的長)的文化墻PM是否需要拆除?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作思考:如圖1,在平面直角坐標(biāo)系中,等腰的直角頂點(diǎn)C在原點(diǎn),將其繞著點(diǎn)O旋轉(zhuǎn),若頂點(diǎn)A恰好落在點(diǎn)的長為______;點(diǎn)B的坐標(biāo)為______直接寫結(jié)果

感悟應(yīng)用:如圖2,在平面直角坐標(biāo)系中,將等腰如圖放置,直角頂點(diǎn),點(diǎn),試求直線AB的函數(shù)表達(dá)式.

拓展研究:如圖3,在直角坐標(biāo)系中,點(diǎn),過點(diǎn)B軸,垂足為點(diǎn)A,作軸,垂足為點(diǎn)C,P是線段BC上的一個動點(diǎn),點(diǎn)Q是直線上一動點(diǎn)問是否存在以點(diǎn)P為直角頂點(diǎn)的等腰,若存在,請求出此時P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

136x2-49=0;

2)(x-32=64;

38x327=0;

44x12121=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對垃圾進(jìn)行分類投放,能有效提高對垃圾的處理和再利用,減少污染,保護(hù)環(huán)境.為了調(diào)查同學(xué)們對垃圾分類知識的了解程度,增強(qiáng)同學(xué)們的環(huán)保意識,普及垃圾分類及投放的相關(guān)知識,某校數(shù)學(xué)興趣小組的同學(xué)設(shè)計了垃圾分類知識及投放情況問卷,并在本校隨機(jī)抽取部分同學(xué)進(jìn)行問卷測試,把測試成績分成優(yōu)、良、中、差四個等級,繪制了如下不完整的統(tǒng)計圖:

根據(jù)以上統(tǒng)計信息,解答下列問題:

1)求成績是優(yōu)的人數(shù)占抽取人數(shù)的百分比;

2)求本次隨機(jī)抽取問卷測試的人數(shù);

3)請把條形統(tǒng)計圖補(bǔ)充完整;

4)若該校學(xué)生人數(shù)為3000人,請估計成績是優(yōu)的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小紅在斜坡下的點(diǎn)C處測得樓頂B的仰角為60°,在斜坡上的點(diǎn)D處測得樓頂B的仰角為45°,其中點(diǎn)A,C,E在同一直線上.

(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)A(2,0)的直線l與y軸交于點(diǎn)B,tan∠OAB= ,直線l上的點(diǎn)P位于y軸左側(cè),且到y(tǒng)軸的距離為1.

(1)求直線l的表達(dá)式;
(2)若反比例函數(shù)y= 的圖象經(jīng)過點(diǎn)P,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市為了吸引顧客,設(shè)計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標(biāo)有“0元”、"10元”、“20元”、“30元”的字樣.規(guī)定:顧客在本超市一次性消費(fèi)滿200元,就可以在箱子里先后摸出兩個小球(每一次摸出后不放回).某顧客剛好消費(fèi)200元,則該顧客所獲得購物券的金額不低于30元的概率.

查看答案和解析>>

同步練習(xí)冊答案