如圖所示,ABCD是平行四邊形,DE平分∠ADC,交CB的延長線于E,BF平分∠ABC,交AD的延長線于F,試說明四邊形BFDE是平行四邊形.

答案:
解析:

  解:因為四邊形ABCD是平行四邊形,

  所以∠ADC=∠ABC.

  又因為DE平分∠ADC,BF平分∠ABC,

  所以∠1=∠2,∠3=∠4.

  所以∠E=∠1=∠F.

  所以DE∥FB.

  又因為AF∥CE,

  所以四邊形BFDE是平行四邊形.

  分析:已知BE∥FD,再說明BE=FD或DE∥BF即可.

  注意:在利用平行四邊形的判別方法判定四邊形時,關(guān)鍵是要正確地選擇方法.


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,ABCD是矩形,AB=4cm,AD=3cm.把矩形沿直線AC折疊,點B落在E處,連接DE.四邊形ACED是什么圖形?為什么?它的面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖所示,ABCD是正方形,BE⊥BF,BE=BF,試判斷AE與FC的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示.ABCD是梯形,AD∥BC,AD<BC,AB=AC且AB⊥AC,BD=BC,AC,BD交于O.求∠BCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•泰州一模)一個包裝盒的設(shè)計方法如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得ABCD四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形斜邊的兩個端點,設(shè)AE=FB=xcm.若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應(yīng)取的值為
15
15
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,ABCD是矩形,E在CD上,F(xiàn)在BC上,∠AEF=90°.
求證:
(1)△ADE∽△ECF;
(2)AE•EC=EF•AD.

查看答案和解析>>

同步練習冊答案