【題目】在如下三個函數(shù)圖象中,有兩個函數(shù)圖象能近似地刻畫如下兩個情境:
情境:小芳離開家不久,發(fā)現(xiàn)把作業(yè)本忘在家里,于是返回家里找到了作業(yè)本再去學校;
情境:小芳從家出發(fā),走了一段路程后,為了趕時間,以更快的速度前進.
(1)情境, 所對應(yīng)的函數(shù)圖象分別為 , (填寫序號).
(2)請你為剩下的函數(shù)圖象寫出一個適合的情境.
【答案】(1)③,①.
(2)小芳從家出發(fā)去書店看了一會書又返回家中(答案不唯一)
【解析】分析:(1)根據(jù)題意找到符合情景描述的函數(shù)圖象,情景a:小芳離開家不久,發(fā)現(xiàn)把作業(yè)本忘在家里便返回家中,此時距離家的距離為,再去學校后離家越來越遠,③項符合題意,故選③;情景b:從家出發(fā)走了一段路程后加速前進,則同樣的時間小芳離家的距離更遠,①項符合題意,故選①。
(2)根據(jù)題意把函數(shù)圖象分為三部分,描述出符合該圖象的情景即可。
本題解析:(1)③,①.(2)答案不唯一,例如:小芳從家出發(fā)去書店看了一會書又返回家中.只要符合圖象即可得分(所寫情境需滿足三條:從家出發(fā),過程有停留,終點回到家.)
點睛: 主要考查函數(shù)圖像,關(guān)鍵要弄清楚時間與家里的距離,通過這個關(guān)系判斷難度就不大,但很多學生不太會看圖,弄不清楚函數(shù)所表達的意義.其實函數(shù)圖像就是表達兩個因素之間的關(guān)系.認真思考即可.
科目:初中數(shù)學 來源: 題型:
【題目】下列3×3網(wǎng)格圖都是由9個相同的小正方形組成,每個網(wǎng)格圖中有3個小正方形已涂上陰影,請在余下的6個空白小正方形中,按下列要求涂上陰影:
(1)選取1個涂上陰影,使4個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形.
(2)選取1個涂上陰影,使4個陰影小正方形組成一個中心對稱圖形,但不是軸對稱圖形.
(3)選取2個涂上陰影,使5個陰影小正方形組成一個軸對稱圖形.
(請將三個小題依次作答在圖1、圖2、圖3中,均只需畫出符合條件的一種情形)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,把矩形沿對角線AC折疊,點B落在點E處,CE與AD相交于點O.
(1)求證:△AOE≌△COD;
(2)若∠OCD=30°,AB=,求△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A,C在EF上,AD∥BC,DE∥BF,AE=CF.
(1)求證:四邊形ABCD是平行四邊形;
(2)直接寫出圖中所有相等的線段(AE=CF除外).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛慢車與一輛快車分別從甲、乙兩地同時出發(fā),勻速相向而行,兩車在途中相遇后停留一段時間,然后分別按原速一同駛往甲地后停車。設(shè)慢車行駛的時間為x小時,兩車之間的距離為y千米,圖中折線表示y與x之間的函數(shù)圖象,請根據(jù)圖象解決下列問題:
(1)甲、乙兩地之間的距離為________千米;
(2)求快車和慢車的速度。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛客車從甲地開往乙地,車上原有(5a﹣2b)人,中途停車一次,有一些人下車,此時下車的人數(shù)比車上原有人數(shù)一半還多2人,同時又有一些上車,上車的人數(shù)比(7a﹣4b)少3人.
(1)用代數(shù)式表示中途下車的人數(shù);
(2)用代數(shù)式表示中途下車、上車之后,車上現(xiàn)在共有多少人?
(3)當a=10,b=9時,求中途下車、上車之后,車上現(xiàn)在的人數(shù)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,雙曲線(x<0)經(jīng)過平行四邊形ABCO的對角線交點D,已知邊OC在y軸上,且AC⊥AB于點C,則平行四邊形ABCO的面積是( )
A. B. C. 3 D. 6
【答案】A
【解析】試題分析:∵點D為平行四邊形ABCO的對角線交點,雙曲線y=(x<0)經(jīng)過點D,AC⊥y軸,
∴S平行四邊形ABCO=4S△COD=4××||=.
故選A.
點睛:本題考查了反比例函數(shù)系數(shù)k的幾何意義以及平行四邊形的性質(zhì),根據(jù)平行四邊形的性質(zhì)結(jié)合反比例函數(shù)系數(shù)k的幾何意義,找出S平行四邊形ABCO=4S△COD=2|k|是解題的關(guān)鍵.
【題型】單選題
【結(jié)束】
9
【題目】如果分式在實數(shù)范圍內(nèi)有意義,則的取值范圍是_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(-4,n)、B(3,4)是一次函數(shù)y1=kx+b的圖象與反比例函數(shù)的圖象的兩個交點,過點D(t,0)(0<t<3)作x軸的垂線,分別交雙曲線和直線y1=kx+b于P、Q兩點
(1) 直接寫出反比例函數(shù)和一次函數(shù)的解析式
(2) 當t為何值時,S△BPQ=S△APQ
(3) 以PQ為邊在直線PQ的右側(cè)作正方形PQMN,試說明:邊QM與雙曲線(x>0)始終有交點
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com