【題目】如圖,一拱橋所在弧所對的圓心角為120°(∠AOB=120°),半徑為5 m,一艘6 m寬的船裝載一集裝箱,已知箱頂寬3.2 m,離水面AB2 m,問此船能過橋洞嗎?請說明理由.

【答案】

【解析】試題分析:先根據(jù)垂徑定理找出圓心O,連接OA,OB,OE,過點OFOH⊥EF于點H,∠AOB可得出∠OAB的度數(shù)根據(jù)直角三角形的性質(zhì)得出OK的長,再根據(jù)勾股定理得出EH的長進而得出CD的長與3.2m相比較即可

試題解析:如圖所示,連接OE,過點OOH⊥EF于點H,

∵∠AOB=120°OA=5m, ∴∠OAB=30°,OK=2.5m,則OH=2.5+2=4.5m,

∵OE=5m, ∴在Rt△OEH中,EH=,

∴EF=2EH=, ∴此船能過橋洞

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】探究與發(fā)現(xiàn):如圖①,在ABC中,∠B=C=45°,點DBC邊上,點EAC邊上,且∠ADE=AED,連結(jié)DE.

(1)當∠BAD=60°時,求∠CDE的度數(shù);

(2)當點DBC(點B、C除外)邊上運動時,試探究∠BAD與∠CDE的數(shù)量關(guān)系;

(3)深入探究:如圖②,若∠B=C,但∠C≠45°,其它條件不變,試繼續(xù)探究∠BAD與∠CDE的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一元二次方程ax2+bx+c=0兩根為x1,x2,x2+x1=﹣,x2.x1=.如果拋物線y=ax2+bx+c經(jīng)過點(1,2),若abc=4,且a≥b≥c,則|a|+|b|+|c|的最小值為( 。

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在成都地鐵6號線某站通道的建設中,建設工人將坡長為10米(AB=10米),坡角60°(∠BAE=60°)的斜坡通道改造成坡角為45°(∠BDE=45°)的斜坡通道,使斜坡的起點從點A處向左平移至點D處,求截面圖上AD的長.(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家規(guī)定中小學生每天在校體育活動時間不低于1小時.為此,某市就你每天在校體育活動時間是多少的問題隨機調(diào)查了轄區(qū)內(nèi)300名初中學生.根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖(部分)如圖所示,其中分組情況是:

A組:;B組:

C組:D組:

請根據(jù)上述信息解答下列問題:

(1)C組的人數(shù)是

(2)本次調(diào)查數(shù)據(jù)的中位數(shù)落在組內(nèi);

(3)若該轄區(qū)約有24 000名初中學生,請你估計其中達國家規(guī)定體育活動時間的人約有多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在RtABC中,∠ACB90°,以斜邊AB為邊向外作正方形ABDE,且正方形的對角線交于點O,連接OC.已知AC5,OC12,則另一直角邊BC的長為_____.(提示:分別過OCA、CB作垂線)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+2x軸相交于A(﹣1,0),B(4,0)兩點,與y軸相交于點C.

(1)求拋物線的解析式;

(2)將△ABCAB中點M旋轉(zhuǎn)180°,得到△BAD.

①求點D的坐標;

②判斷四邊形ADBC的形狀,并說明理由;

(3)在該拋物線對稱軸上是否存在點P,使△BMP與△BAD相似?若存在,請求出所有滿足條件的P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一段拋物線:y=﹣x(x﹣5)(0≤x≤5),記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉(zhuǎn)180°得C2,交x軸于點A2;將C2繞點A2旋轉(zhuǎn)180°得C3,交x軸于點A3;…如此進行下去,得到一“波浪線”,若點P(2018,m)在此“波浪線”上,則m的值為( )

A. 4 B. ﹣4 C. ﹣6 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店從廠家以21元的價格購進一批商品,該商品可以自行定價,若每件商品售價為元,則可賣出(350-10)件,但物價局限定每件商品加價不能超過進價的20%,商店計劃要賺400元,需要賣出多少件商品?每件商品應售多少元?

查看答案和解析>>

同步練習冊答案