附加題:像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
回答下列問題:
如圖,四邊形ABCD是正方形,AF=AE,觀察圖形,試問①可以通過平行移動、翻折、旋轉(zhuǎn)中的哪一種方法,怎樣變化,使△ABE變到△ADF的位置;②指出圖中線段BE與DF之間的關(guān)系,為什么?

解:①可以通過平行移動、翻折旋轉(zhuǎn)中的旋轉(zhuǎn)方法,繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,使△ABE變到△ADF的位置;
②由全等變換的定義可知,通過旋轉(zhuǎn)90°,△ABE變到△ADF的位置,只改變位置,不改變形狀大小,
∴△ABE≌△ADF
∴BE=DF,∠ABE=∠ADF.
∵∠ADF+∠F=90°,
∴∠ABE+∠F=90°,
∴BE⊥DF.
故BE、DF的數(shù)量關(guān)系為:相等,位置關(guān)系為:垂直.
分析:①根據(jù)正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)作答.旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心,旋轉(zhuǎn)方向,旋轉(zhuǎn)角度.
②關(guān)系應(yīng)包括位置關(guān)系和數(shù)量關(guān)系.旋轉(zhuǎn)前后的三角形是全等的,∴BE=DF,延長BE交DF于點(diǎn)G,利用對應(yīng)角相等,可得到垂直.
點(diǎn)評:平移是沿直線移動一定距離得到新圖形,旋轉(zhuǎn)是繞某個(gè)點(diǎn)旋轉(zhuǎn)一定角度得到新圖形,軸對稱是沿某條直線翻折得到新圖形.觀察時(shí)要緊扣圖形變換特點(diǎn),進(jìn)行分析判斷.本題主要考查了旋轉(zhuǎn)前后的三角形全等;所求關(guān)系應(yīng)包括位置關(guān)系和數(shù)量關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、附加題:如圖(1),把△ABC沿直線BC平行移動線段BC的長度,可以變到△DEC的位置;
如圖(2),以BC為軸,把△ABC翻折180°,可以變到△DBC的位置;
如圖(3),以點(diǎn)A為中心,把△ABC旋轉(zhuǎn)180°,可以變到△AED的位置.
像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動、翻折、旋轉(zhuǎn)等方法變成的,這種只是改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.

回答下列問題:
已知:如圖(4),點(diǎn)E是位于正方形ABCD的邊AD上一點(diǎn),F(xiàn)為BA延長線上一點(diǎn),且AF=AE;
①在圖中,可以通過平行移動、翻折、旋轉(zhuǎn)中的哪一種方法怎樣變化,使△ABE變到△ADF的位置;
②指出圖(4)中線段BE與DF之間的關(guān)系,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、附加題:像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
回答下列問題:
如圖,四邊形ABCD是正方形,AF=AE,觀察圖形,試問①可以通過平行移動、翻折、旋轉(zhuǎn)中的哪一種方法,怎樣變化,使△ABE變到△ADF的位置;②指出圖中線段BE與DF之間的關(guān)系,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

附加題:如圖(1),把△ABC沿直線BC平行移動線段BC的長度,可以變到△DEC的位置;
如圖(2),以BC為軸,把△ABC翻折180°,可以變到△DBC的位置;
如圖(3),以點(diǎn)A為中心,把△ABC旋轉(zhuǎn)180°,可以變到△AED的位置.
像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動、翻折、旋轉(zhuǎn)等方法變成的,這種只是改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.

回答下列問題:
已知:如圖(4),點(diǎn)E是位于正方形ABCD的邊AD上一點(diǎn),F(xiàn)為BA延長線上一點(diǎn),且AF=AE;
①在圖中,可以通過平行移動、翻折、旋轉(zhuǎn)中的哪一種方法怎樣變化,使△ABE變到△ADF的位置;
②指出圖(4)中線段BE與DF之間的關(guān)系,為什么?

查看答案和解析>>

同步練習(xí)冊答案