【題目】觀察如圖圖形,把一個三角形分別連接其三邊中點,構(gòu)成4個小三角形,挖去中間的一個小三角形(如圖1),對剩下的三個小三角形再分別重復以上做法,……,據(jù)此解答下面的問題
(1)填寫下表:
圖形 | 挖去三角形的個數(shù) |
圖形1 | 1 |
圖形2 | 1+3 |
圖形3 | 1+3+9 |
圖形4 |
|
(2)根據(jù)這個規(guī)律,求圖n中挖去三角形的個數(shù)wn;(用含n的代數(shù)式表示)
(3)若圖n+1中挖去三角形的個數(shù)為wn+1,求wn+1﹣Wn
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知線段 AB=12cm,點 C 為 AB 上的一個動點,點 D,E 分別是 AC 和 BC的中點.
(1)若 AC=4cm,求 DE 的長.
(2)若 AC=acm(不超過 12cm),求 DE 的長.
(3)知識遷移:如圖②,已知∠AOB=120°,過角的內(nèi)部任意一點 C 畫射線OC,若OD,OE 分別平分∠AOC 和∠BOC,求∠DOE 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某片果園有果樹80棵,現(xiàn)準備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產(chǎn)量隨之降低,若該果園每棵果樹產(chǎn)果y千克,增種果樹x棵,它們之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)解析式;
(2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?
(3)當增種果樹多少棵時,果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)30°到正方形AB’C’D’,圖中陰影部分的面積為( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:若線段AB上有一點P,當PA=PB時,則稱點P為線段AB的中點。
已知數(shù)軸上A,B兩點對應數(shù)分別為a和b,,P為數(shù)軸上一動點,對應數(shù)為x.
(1)a=______,b=_______;
(2)若點P為線段AB的中點,則P點對應的數(shù)為______________.若B為線段AP的中點時則P點對應的數(shù)為______________。
(3)若點A、點B同時向左運動,它們的速度都為1個單位長度/秒,與此同時點P從-16處以2個單位長度/秒向右運動。
①設(shè)運動的時間為t秒,直接用含t的式子填空
AP=____________;BP=______________。
②經(jīng)過多長時間后,點A、點B、點P三點中其中一點是另外兩點的中點?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的弦,半徑OA=2,OA和AB的長度是關(guān)于x的一元二次方程x2﹣4x+a=0的兩個實數(shù)根.
(1)求弦AB的長度;
(2)計算S△AOB;
(3)⊙O上一動點P從A點出發(fā),沿逆時針方向運動一周,當S△POA=S△AOB時,求P點所經(jīng)過的弧長(不考慮點P與點B重合的情形).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣kx+k2+n=0有兩個不相等的實數(shù)根x1、x2,且(2x1+x2)2﹣8(2x1+x2)+15=0.
(1)求證:n<0;
(2)試用k的代數(shù)式表示x1;
(3)當n=﹣3時,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB//CD,點C在點D的右側(cè),∠ABC,∠ADC的平分線交于點E(不與B,D點重合).,.
(1)若點B在點A的左側(cè),求∠BED的度數(shù)(用含的代數(shù)式表示).
(2)將線段BC沿DC方向平移,當點B移動到點A右側(cè)時,請畫出圖形并判斷的度數(shù)是否改變.若改變,請求出的度數(shù)(用含的代數(shù)式表示);若不變,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com