【題目】已知△ABC的三個(gè)頂點(diǎn)A,B,C的坐標(biāo)分別為A(4,0),B(0,-3),C(2,-4).
(1)在如圖的平面直角坐標(biāo)系中畫(huà)出△ABC關(guān)于x軸對(duì)稱的△A'B'C',并分別寫(xiě)出A′,B′,C′的坐標(biāo);
(2)將△ABC向左平移5個(gè)單位,請(qǐng)畫(huà)出平移后的△A″B″C″,并寫(xiě)出△A″B″C″各個(gè)頂點(diǎn)的坐標(biāo);
(3)求出(2)中的△ABC在平移過(guò)程中所掃過(guò)的面積.
【答案】(1)A′(4,0),B′(0,3),C′(2,4);(2)A″(-1,0),B″(-5,-3),C″(-3,-4);(3)25
【解析】試題分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C以及點(diǎn)A′,B′,C′位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫(xiě)出各點(diǎn)的坐標(biāo);
(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C向左平移5個(gè)單位的對(duì)應(yīng)點(diǎn)A″、B″、C″,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫(xiě)出各點(diǎn)的坐標(biāo);
(3)根據(jù)△ABC掃過(guò)的面積等于一個(gè)平行四邊形的面積加上△ABC的面積列式計(jì)算即可得解.
試題解析:解:(1)△ABC如圖所示,A′(4,0),B′(0,3),C′(2,4);
(2)△A″B″C″如圖所示,A″(﹣1,0),B″(﹣5,﹣3),C″(﹣3,﹣4);
(3)△ABC在平移過(guò)程中所掃過(guò)的面積=5×4+(4×4﹣×4×3﹣×1×2﹣×2×4)=20+(16﹣6﹣1﹣4)=20+5=25.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:
①兩點(diǎn)確定一條直線;
②兩點(diǎn)之間,線段最短;
③若∠AOC=∠AOB,則射線OC是∠AOB的平分線;
④連接兩點(diǎn)之間的線段叫做這兩點(diǎn)間的距離;
⑤學(xué)校在小明家南偏東25°方向上,則小明家在學(xué)校北偏西25°方向上.
其中正確的有________個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(1,0)、B(11,0),點(diǎn)C為線段AB上一動(dòng)點(diǎn),以AC為直徑的⊙D的半徑DE⊥AC,△CBF是以CB為斜邊的等腰直角三角形,且點(diǎn)E、F都在第四象限,當(dāng)點(diǎn)F到過(guò)點(diǎn)A、C、E三點(diǎn)的拋物線的頂點(diǎn)的距離最小時(shí),該拋物線的解析式為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校為了獎(jiǎng)勵(lì)初三優(yōu)秀畢業(yè)生,計(jì)劃購(gòu)買一批平板電腦和一批學(xué)習(xí)機(jī),經(jīng)投標(biāo),購(gòu)買1臺(tái)平板電腦3 000元,購(gòu)買1臺(tái)學(xué)習(xí)機(jī)800元.
(1)學(xué)校根據(jù)實(shí)際情況,決定購(gòu)買平板電腦和學(xué)習(xí)機(jī)共100臺(tái),要求購(gòu)買的總費(fèi)用不超過(guò)168 000元,則購(gòu)買平板電腦最多多少臺(tái)?
(2)在(1)的條件下,購(gòu)買學(xué)習(xí)機(jī)的臺(tái)數(shù)不超過(guò)平板電腦臺(tái)數(shù)的1.7倍.請(qǐng)問(wèn)有哪幾種購(gòu)買方案?哪種方案最省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】骰子是一種特別的數(shù)字立方體(見(jiàn)右圖),它符合規(guī)則:相對(duì)兩面的點(diǎn)數(shù)之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B、C是數(shù)軸上的三點(diǎn),O是原點(diǎn),BO=3,AB=2BO,5AO=3CO.
(1)寫(xiě)出數(shù)軸上點(diǎn)A、C表示的數(shù);
(2)點(diǎn)P、Q分別從A、C同時(shí)出發(fā),點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)Q以每秒6個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),M為線段AP的中點(diǎn),點(diǎn)N在線段CQ上,且CN=CQ.設(shè)運(yùn)動(dòng)的時(shí)間為t(t>0)秒.
①數(shù)軸上點(diǎn)M、N表示的數(shù)分別是 (用含t的式子表示);
②t為何值時(shí),M、N兩點(diǎn)到原點(diǎn)的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AM、CN都是BD的垂線,M、N是垂足.
求證:(1)AM=CN;(2)∠MAN=∠NCM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O為直線AB上一點(diǎn),∠COE是直角,OF平分∠AOE.
(1)如圖①,若∠COF=34°,則∠BOE=________;若∠COF=n°,則∠BOE=________;∠BOE與∠COF的數(shù)量關(guān)系為_(kāi)_______________.
(2)當(dāng)射線OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)到如圖②的位置時(shí),(1)中∠BOE與∠COF的數(shù)量關(guān)系是否仍然成立?請(qǐng)說(shuō)明理由.
(3)在圖③中,若∠COF=65°,在∠BOE的內(nèi)部是否存在一條射線OD,使得2∠BOD與∠AOF的和等于∠BOE與∠BOD的差的一半?若存在,請(qǐng)求出∠BOD的度數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小李按市場(chǎng)價(jià)格30元/千克收購(gòu)了一批海鮮1000千克存放在冷庫(kù)里,據(jù)預(yù)測(cè),海鮮的市場(chǎng)價(jià)格將每天每千克上漲1元.冷凍存放這批海鮮每天需要支出各種費(fèi)用合計(jì)310元,而且這些海鮮在冷庫(kù)中最多存放160天,同時(shí)平均每天有3千克的海鮮變質(zhì).
(1)設(shè)x天后每千克該海鮮的市場(chǎng)價(jià)格為y元,試寫(xiě)出y與x之間的函數(shù)關(guān)系式;
(2)若存放x天后,將這批海鮮一次性出售.設(shè)這批海鮮的銷售總額為P元,試寫(xiě)出P與x之間的函數(shù)關(guān)系式;
(3)小李將這批海鮮存放多少天后出售可獲得最大利潤(rùn),最大利潤(rùn)是多少元?(利潤(rùn)W=銷售總額﹣收購(gòu)成本﹣各種費(fèi)用)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com