【題目】某水果批發(fā)市場將一批蘋果分為A,B,C,D四個等級,統(tǒng)計后將結(jié)果制成條形圖,已知A等級蘋果的重量占這批蘋果總重量的30%. 回答下列問題:

(1)這批蘋果總重量為kg;
(2)請將條形圖補充完整;
(3)若用扇形圖表示統(tǒng)計結(jié)果,則C等級蘋果所對應(yīng)扇形的圓心角為度.

【答案】
(1)4000
(2)解:4000﹣1200﹣1600﹣200=1000(kg),

將條形圖補充為:


(3)90
【解析】解:(1)1200÷30%=4000(kg). 故這批蘋果總重量為4000kg;
3) ×360°=90°.
故C等級蘋果所對應(yīng)扇形的圓心角為90度.
所以答案是:4000,90.
【考點精析】關(guān)于本題考查的扇形統(tǒng)計圖和條形統(tǒng)計圖,需要了解能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,將△ABC繞點C按順時針方向旋轉(zhuǎn)n度后,得到△EDC,此時,點D在AB邊上,斜邊DE交AC邊于點F,則n的大小和圖中陰影部分的面積分別為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計算:( 1+|3tan30°﹣1|﹣(π﹣3)0;
(2)先化簡,再求值: ,其中x= ﹣3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一筆直的海岸線l上有AB兩個觀測站,A在B的正東方向,AB=2(單位:km).有一艘小船在點P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向.

(1)求點P到海岸線l的距離;
(2)小船從點P處沿射線AP的方向航行一段時間后,到點C處,此時,從B測得小船在北偏西15°的方向.求點C與點B之間的距離.(上述兩小題的結(jié)果都保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,經(jīng)過點B(﹣2,0)的直線y=kx+b與直線y=4x+2相交于點A(﹣1,﹣2),則不等式4x+2<kx+b<0的解集為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC= ,BC=3,△DEF是邊長為a(a為小于3的常數(shù))的等邊三角形,將△DEF沿AC方向平移,使點D在線段AC上,DE∥AB,設(shè)△DEF與△ABC重疊部分的周長為T.

(1)求證:點E到AC的距離為一個常數(shù);
(2)若AD= ,當a=2時,求T的值;
(3)若點D運動到AC的中點處,請用含a的代數(shù)式表示T.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分∠ABC,P是BD上一點,過點P作PM⊥AD,PN⊥CD,垂足分別為M,N.
(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a≠0,函數(shù)y= 與y=﹣ax2+a在同一直角坐標系中的大致圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是⊙O的內(nèi)接正三角形,弦EF經(jīng)過BC邊的中點D,且EF∥AB,若AB=8,則DE的長為(

A. +1
B.2 ﹣2
C.2 ﹣2
D. +1

查看答案和解析>>

同步練習(xí)冊答案