【題目】(1)如圖1,已知⊙O的半徑是4,△ABC內(nèi)接于⊙O,AC=

①求∠ABC的度數(shù);

②已知AP是⊙O的切線,且AP=4,連接PC.判斷直線PC與⊙O的位置關(guān)系,并說明理由;

(2)如圖2,已知ABCD的頂點A、B、D在⊙O上,頂點C在⊙O內(nèi),延長BC交⊙O于點E,連接DE.求證:DE=DC.

【答案】(145°;直線PC⊙O相切.理由見解析;(2)證明見解析.

【解析】試題分析:(1連結(jié)OAOC,如圖1,利用勾股定理的逆定理證明△OCA為等腰直角三角形,∠AOC=90°,然后根據(jù)圓周角定理易得∠ABC=45°;

先根據(jù)切線的性質(zhì)得∠OAP=90°,再證四邊形APCO為平行四邊形,加上∠AOC=90°,則可判斷四邊形AOCP為矩形,所以∠PCO=90°,然后根據(jù)切線得判斷定理得到PC⊙O的切線;

2)根據(jù)平行四邊形的性質(zhì)得AB∥CD,AD∥BC,再由平行線的性質(zhì)得∠B+∠A=180°,∠DCE=∠B,由圓內(nèi)接四邊形的性質(zhì)得∠E+∠A=180°,易得∠DCE=∠E,則根據(jù)等腰三角形的判定定理即可得到DC=DE

試題解析:(1)解:連結(jié)OA、OC,如圖1,

OA=OC=4AC=4,

∴OA2+OC2=AC2,

∴△OCA為等腰直角三角形,∠AOC=90°,

∴∠ABC=AOC=45°

直線PC⊙O相切.理由如下:

∵AP⊙O的切線,

∴∠OAP=90°,

∠AOC=90°

∴AP∥OC

AP=OC=4,

四邊形APCO為平行四邊形,

∵∠AOC=90°,

四邊形AOCP為矩形,

∴∠PCO=90°,

∴PC⊥OC

∴PC⊙O的切線;

2)證明:四邊形ABCD為平行四邊形,

∴AB∥CD,AD∥BC,

∴∠B+∠A=180°,∠DCE=∠B,

∵∠E+∠A=180°

∴∠E=∠B,

∴∠DCE=∠E

∴DC=DE

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C、D、E三點在同一直線上,連接BD.

求證:
(1)△BAD≌△CAE;
(2)試猜想BD、CE有何特殊位置關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若方程x2+kx+9=0有兩個相等的實數(shù)根,則k=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OB為∠AOC的平分線,OD是∠COE的平分線.

(1)如果∠AOB=40°,∠DOE=30°,那么∠BOD為多少度?

(2)如果∠AOE=140°,∠COD=30°,那么∠AOB為多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC為等邊三角形,D、E分別為BC、AC邊上的兩動點(與點A、B、C不重合),且總使CD=AE,AD與BE相交于點F.

(1)求證:AD=BE;
(2)求∠BFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在△ABC中,CD是AB邊上的高,AC=20,BC=15,DB=9.

(1)求CD的長;
(2)△ABC是直角三角形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用四舍五入法寫出數(shù)0.05129(精確到百分位)的近似數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上A,B兩點對應(yīng)的有理數(shù)分別為10和15,點P從點A出發(fā),以每秒1個單位長度的速度沿數(shù)軸正方向運動,點Q同時從原點O出發(fā),以每秒2個單位長度的速度沿數(shù)軸正方向運動,設(shè)運動時間為t秒.

(1)當0<t<5時,用含t的式子填空:

BP=_______,AQ=_______;

(2)當t=2時,求PQ的值;

(3)當PQ=AB時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列事件中最適合使用普查方式收集數(shù)據(jù)的是(
A.為制作校服,了解某班同學的身高情況
B.了解全市初三學生的視力情況
C.了解一種節(jié)能燈的使用壽命
D.了解我省農(nóng)民的年人均收入情況

查看答案和解析>>

同步練習冊答案