如圖,有長為48米的籬笆,一面利用墻(墻的最大可用長度25米),圍成中間隔有一道籬笆的長方形花圃ABCD.
(1)當AB的長是多少米時,圍成長方形花圃ABCD的面積為180m2
(2)能圍成總面積為240m2的長方形花圃嗎?說明理由.
(1)設AB的長是x米,則BC的長為(48-3x)米,根據(jù)題意列方程得,
x(48-3x)=180,
解得x1=6,x2=10,
當x=6時,48-3x=30>25,不符合題意,舍去;
當x=10時,48-3x=18<25,符合題意;
答:當AB的長是10米時,圍成長方形花圃ABCD的面積為180m2

(2)不能,理由如下:
同(1)可得x(48-3x)=240,
整理得x2-16x+80=0,
△=(-16)2-4×80=-64<0,
所以此方程無解,
即不能圍成總面積為240m2的長方形花圃.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過點A(0,3)、B(4,3)、C(1,0)、
(1)填空:拋物線的對稱軸為直線x=______,拋物線與x軸的另一個交點D的坐標為______;
(2)求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+4ax+t(a>0)交x軸于A、B兩點,交y軸于點C,拋物線的對稱軸交x軸于點E,點B的坐標為(-1,0).
(1)求拋物線的對稱軸及點A的坐標;
(2)過點C作x軸的平行線交拋物線的對稱軸于點P,你能判斷四邊形ABCP是什么四邊形?并證明你的結論;
(3)連接CA與拋物線的對稱軸交于點D,當∠APD=∠ACP時,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c經(jīng)過A(-3,0),B(1,0),C(3,6)三點,且與y軸交于點E.(1)求拋物線的解析式;
(2)若點F的坐標為(0,-
1
2
),直線BF交拋物線于另一點P,試比較△AFO與△PEF的周長的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商店將進價為100元的某商品按120元的價格出售,可賣出300個;若商店在120元的基礎上每漲價1元,就要少賣10個,而每降價1元,就可多賣30個.
(1)求所獲利潤y(元)與售價x(元)之間的函數(shù)關系式;
(2)為獲利最大,商店應將價格定為多少元?
(3)為了讓利顧客,在利潤相同的情況下,請為商店選擇正確的出售方式,并求出此時的售價.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

現(xiàn)有一塊矩形場地,如圖所示,長為40m,寬為30m,要將這塊地劃分為四塊分別種植:A.蘭花;B.菊花;C.月季;D.牽;ǎ
(1)求出這塊場地中種植B菊花的面積y與B場地的長x之間的函數(shù)關系式;求出此函數(shù)與x軸的交點坐標,并寫出自變量的取值范圍;
(2)當x是多少時,種植菊花的面積最大,最大面積是多少?請在格點圖中畫出此函數(shù)圖象的草圖(提示:找三點描出圖象即可).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一個小服裝廠生產(chǎn)某種風衣,售價P(元/件)與月銷售量x(件)之間的關系為P=160-2x,生產(chǎn)x件的成本R=500+30x元.
(1)該廠的月產(chǎn)量為多大時,獲得的月利潤為1300元?
(2)當月產(chǎn)量為多少時,可獲得最大月利潤?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,用50m長的籬笆圍成中間有一道籬笆墻的養(yǎng)殖場,設它的長為xm,養(yǎng)殖場的一邊靠墻.
(1)要使養(yǎng)殖場的面積最大,養(yǎng)殖場的長應為多少米?
(2)若中間有n(n是大于1的整數(shù))道籬笆隔墻,要使養(yǎng)殖場面積最大,養(yǎng)殖場的長應為多少米?比較(1)和(2),你能得出什么結論?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:點P(a+1,a-1)關于x軸的對稱點在反比例函數(shù)y=-
8
x
(x>0)的圖象上,y關于x的函數(shù)y=k2x2-(2k+1)x+1的圖象與坐標軸只有兩個不同的交點A﹑B,求P點坐標和△PAB的面積.

查看答案和解析>>

同步練習冊答案