(本小題滿分10分)
如圖,O是△ABC的外接圓,AB = AC,過點A作AP∥BC,交BO的延長線于P.
(1)求證:AP是O的切線;
(2)若O的半徑R = 6,△ACD為等邊三角形時,求線段AP的長.     
證明:(1)∵
作等腰三角形底邊BC上的高AD,
∴AD過圓心O,.……2分
在Rt⊿ACD中∠DAC+∠DCA=90°

∴∠PAC=∠DCA
∴∠DAC+∠PAC =90°
是⊙的切線.……6分
(2)∵⊿ACD為等邊三角形
∴∠ABP=30°,
∴∠AOP=60°.……8分
在Rt⊿AOP中
.……10分
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,的直徑,上的點,

          

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,點C′與半圓上的點C關于直徑AB成軸對稱.若∠AOC=40°,則∠CC′B
 ▲ °.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,BC交⊙O于點D,DE⊥AC于點E,要使DE是⊙O的切線,還需補充一個條件,則補充的條件不正確的是( 。
A.DE="DO"B.AB=AC
C.CD="DB"D.AC∥OD

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分,第(1)題7分,第(2)題5分)
如圖,在⊙O中,直徑AB與弦CD垂直,垂足為E,連接AC,將△ACE沿AC翻折得到△ACF,直線FC與直線AB相交于點G.
(1)證明:直線FC與⊙O相切;
(2)若,求證:四邊形OCBD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

(2011•廣元)若用圓心角為120°,半徑為9的扇形圍成一個圓錐側(cè)面(接縫忽略不計),則這個圓錐的底面直徑是( 。
A.3B.6
C.9D.12

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(10分)如圖直角坐標系中,已知A(-4,0),B(0,3),點M在線段A
上.
(1)如圖1,如果點M是線段AB的中點,且⊙M的半徑為2,試判斷直線OB與⊙M的位置關系,并說明理由;
(2)如圖2,⊙M與x軸、y軸都相切,切點分別是點E、F,試求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(11·貴港)(本題滿分11分)
如圖所示,在以O為圓心的兩個同心圓中,小圓的半徑為1,AB與小圓相切于點A,與大圓相交于點B,大圓的弦BC⊥AB于點B,過點C作大圓的切線CD交AB的延長線于點D,連接OC交小圓于點E,連接BE、BO.

(1)求證:△AOB∽△BDC;
(2)設大圓的半徑為x,CD的長為y:
①求y與x之間的函數(shù)關系式;
②當BE與小圓相切時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(2011年青海,4,2分)如圖1所示,⊙O的兩條切線PA和PB相交于點P,與⊙O相切于A、B兩點,C是⊙O上的一點,若∠P=700,則∠ACB=         。

查看答案和解析>>

同步練習冊答案