已知:如圖,在平面直角坐標系xOy中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=2,OC=3.過原點O作∠AOC的平分線交AB于點D,連接DC,過點D作DE⊥DC,交OA于點E.
(1)求過點E、D、C的拋物線的解析式;
(2)將∠EDC繞點D按順時針方向旋轉后,角的一邊與y軸的正半軸交于點F,另一邊與線段OC交于點G.如果DF與(1)中的拋物線交于另一點M,點M的橫坐標為,那么EF=2GO是否成立?若成立,請給予證明;若不成立,請說明理由;
(3)對于(2)中的點G,在位于第一象限內的該拋物線上是否存在點Q,使得直線GQ與AB的交點P與點C、G構成的△PCG是等腰三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.

【答案】分析:(1)已知三點,可用待定系數(shù)法求出二次函數(shù)解析式;
(2)關鍵在于正確作出旋轉后的圖形,結合幾何知識,利用數(shù)形結合的思想求解;
(3)應當明確△PCG構成等腰三角形有三種情況,逐一討論求解,要求思維的完備性.
解答:解:(1)由已知,得C(3,0),D(2,2),
∵∠ADE=90°-∠CDB=∠BCD,
∴AD=BC.AD=2.
∴E(0,1).(1分)
設過點E、D、C的拋物線的解析式為y=ax2+bx+c(a≠0).
將點E的坐標代入,得c=1.將c=1和點D、C的坐標分別代入,
(2分)
解這個方程組,得
故拋物線的解析式為y=-x2+x+1;(3分)

(2)EF=2GO成立.(4分)
∵點M在該拋物線上,且它的橫坐標為,
∴點M的縱坐標為.(5分)
設DM的解析式為y=kx+b1(k≠0),將點D、M的坐標分別代入,

解得
∴DM的解析式為y=-x+3.(6分)
∴F(0,3),EF=2.(7分)
過點D作DK⊥OC于點K,則DA=DK.
∵∠ADK=∠FDG=90°,
∴∠FDA=∠GDK.
又∵∠FAD=∠GKD=90°,
∴△DAF≌△DKG.
∴KG=AF=1.
∵OC=3,
∴GO=1.(8分)
∴EF=2GO;

(3)∵點P在AB上,G(1,0),C(3,0),
則設P(t,2).
∴PG2=(t-1)2+22,PC2=(3-t)2+22,GC=2.
①PG=PC,則(t-1)2+22=(3-t)2+22,
解得t=2.
∴P(2,2),此時點Q與點P重合,
∴Q(2,2).(9分)
②若PG=GC,則(t-1)2+22=22,
解得t=1,
∴P(1,2),
此時GP⊥x軸.GP與該拋物線在第一象限內的交點Q的橫坐標為1,
∴點Q的縱坐標為,
∴Q(1,).(10分)
③若PC=GC,則(3-t)2+22=22,解得t=3,
∴P(3,2),此時PC=GC=2,△PCG是等腰直角三角形.
過點Q作QH⊥x軸于點H,則QH=GH,設QH=h,
∴Q(h+1,h).
(h+1)2+(h+1)+1=h.
解得h1=,h2=-2(舍去).
∴Q().(12分)
綜上所述,存在三個滿足條件的點Q,即Q(2,2)或Q(1,)或Q(,).
點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、圖形旋轉變換、三角形全等、探究等腰三角形的構成情況等重要知識點,綜合性強,能力要求極高.考查學生分類討論,數(shù)形結合的數(shù)學思想方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,直y=
3
2
x+b
與雙曲線y=
16
x
相交于第一象限內的點A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對應的一次函數(shù)的解析式以及它與x軸的交點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,原點O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點落在X軸上為點B.有人在線段OB上點C(靠點B一側)豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內.已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,乒乓球能不能落入桶內?
(3)當豎直擺放圓柱形桶
8,9,10,11或12
8,9,10,11或12
個時,乒乓球可以落入桶內?(直接寫出滿足條件的一個答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖1,在平面直角坐標系內,直線l1:y=-x+4與坐標軸分別相交于點A、B,與直線l2y=
13
x
相交于點C.
(1)求點C的坐標;
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆重慶萬州區(qū)巖口復興學校九年級下第一次月考數(shù)學試卷(帶解析) 題型:解答題

已知:直角梯形AOBC在平面直角坐標系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點A坐標為(3 ,4). 點P從原點O開始以2個單位/秒速度沿x軸正向運動 ;同時,一條平行于x軸的直線從AC開始以1個單位/秒速度豎直向下運動 ,交OA于點D,交OC于點M,交BC于點E. 當點P到達點B時,直線也隨即停止運動.

(1)求出點C的坐標;
(2)在這一運動過程中, 四邊形OPEM是什么四邊形?請說明理由。若
用y表示四邊形OPEM的面積 ,直接寫出y關于t的函數(shù)關系式及t的
范圍;并求出當四邊形OPEM的面積y的最大值?
(3)在整個運動過程中,是否存在某個t值,使⊿MPB為等腰三角形?
若有,請求出所有滿足要求的t值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年浙江省湖州市中考數(shù)學模擬試卷(十一)(解析版) 題型:解答題

如圖,在平面直角坐標系中,原點O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點落在X軸上為點B.有人在線段OB上點C(靠點B一側)豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內.已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,乒乓球能不能落入桶內?
(3)當豎直擺放圓柱形桶______個時,乒乓球可以落入桶內?(直接寫出滿足條件的一個答案)

查看答案和解析>>

同步練習冊答案