【題目】閱讀下面材料,完成相應(yīng)的任務(wù):
全等四邊形
能夠完全重合的兩個四邊形叫做全等四邊形.由此可知,全等四邊形的對應(yīng)邊相等、對應(yīng)角相等;反之,四條邊分別相等、四個角也分別相等的兩個四邊形全等.在兩個四邊形中,我們把“一條邊對應(yīng)相等”或“一個角對應(yīng)相等”稱為一個條件.根據(jù)探究三角形全等條件的經(jīng)驗(yàn)容易發(fā)現(xiàn),滿足1個、2個、3個、4個條件時,兩個四邊形不一定全等.
在探究“滿足5個條件的四邊形和四邊形是否全等”時,智慧小組的同學(xué)提出如下兩個命題:
①若,,,,,則四邊形四邊形;
②若,,,,,則四邊形四邊形
(1)小明在研究命題①時,在圖1的正方形網(wǎng)格中畫出兩個符合條件的四邊形.由此判斷命題①是____命題(填“真”或“假”);
(2)小彬經(jīng)過探究發(fā)現(xiàn)命題②是真命題,請你結(jié)合圖2證明這一命題;
(3)小穎經(jīng)過探究又提出了一個新的命題:“若,,,______,_____,則四邊形四邊形,請?jiān)跈M線上填寫兩個關(guān)于“角”的條件,使該命題為真命題.
【答案】(1)假;(2)證明見解析;(3),.
【解析】
(1)觀察圖1知有對應(yīng)邊不相等,進(jìn)而求解;
(2)連接,,證明△ABD≌△A′B′D′,△BCD≌△B′C′D′,根據(jù)全等三角形的性質(zhì)進(jìn)行求證;
(3)連接AC、A′C′,證明△ABC≌△A′B′C′,△ACD≌△A′C′D′,根據(jù)全等三角形的性質(zhì)得出結(jié)論.
(1)解:觀察圖1知,,,,
∴命題①是假命題,
故答案為:假;
(2)證明:連接,,如圖2所示,
在△ABD和△A′B′D′中,,
∴△ABD≌△A′B′D′(SAS),
∴BD=B′D′,∠ABD=∠A′B′D′,∠ADB=∠A′D′B′,
在△BCD和△B′C′D′中,,
∴△BCD≌△B′C′D′(SSS),
∴∠C=∠C′,∠CBD=∠C′B′D′,∠BDC=∠B′D′C′,
∵∠ABC=∠ABD+∠CBD,∠A′B′C′=∠A′B′D′+∠C′B′D′,
∠CDA=∠ADB+∠BDC,∠C′D′A′=∠A′D′B′+∠B′D′C′,
∴∠ABC=∠A′B′C′,∠CDA=∠C′D′A′,
∴四邊形ABCD≌四邊形;
(3)解:若AB=A′B′,BC=B′C′,CD=C′D',∠B=∠B′,∠C=∠C′,則四邊形ABCD≌四邊形;
理由如下:
連接AC、A′C′,如圖3所示,
在△ABC和△A′B′C′中,,
∴△ABC≌△A′B′C′(SAS),
∴AC=A′C′,∠BAC=∠B′A′C′,∠BCA=∠B′C′A′,
∵∠BCD=∠B′C′D′,
∴∠ACD=∠A′C′D′,
在△ACD和△A′C′D′中,,
∴△ACD≌△A′C′D′(SAS),
∴AD=A′D′,∠D=∠D′,∠CAD=∠C′A′D′,
∵∠BAD=∠BAC+∠CAD,∠B′A′D′=∠B′A′C′+∠C′A′D′,
∴∠BAD=∠B′A′D′,
∴四邊形ABCD≌四邊形,
故答案為:,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙中,為直徑,、分別切⊙于點(diǎn)、.
(1)如圖①,若,求的大。
(2)如圖②,過點(diǎn)作∥,交于點(diǎn),交⊙于點(diǎn),若,求的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某學(xué)校學(xué)生的個性特長發(fā)展情況,學(xué)校決定圍繞“音樂、體育、美術(shù)、書法、其它活動項(xiàng)目中,你參加哪一項(xiàng)活動(每人只限一項(xiàng))的問題”,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息解答下列問題:
(1)在這次調(diào)查中一共抽查了多少名學(xué)生?
(2)求參加“音樂”活動項(xiàng)目的人數(shù)占抽查總?cè)藬?shù)的百分比.
(3)若全校有2400名學(xué)生,請估計(jì)該校參加“美術(shù)”活動項(xiàng)目的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步了解,,,四名老師在學(xué)生中受歡迎的程度,學(xué)校隨機(jī)抽取了個學(xué)生進(jìn)行調(diào)查(被調(diào)查的學(xué)生必須選且只能選其中的一名老師),并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖:
(1)求和的值;
(2)扇形統(tǒng)計(jì)圖中,對應(yīng)的圓心角的度數(shù)是多少?
(3)求出的人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在Rt△ABC中,∠BAC=90°,AB=2,邊AB在x軸上,BC邊上的中線AD的反向延長線交y軸于點(diǎn)E(0,3),反比例函數(shù)y=(x>0)的圖象過點(diǎn)C,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形△ABC的邊長為6,l是AC邊上的高BF所在的直線,點(diǎn)D為直線l上的一動點(diǎn),連接AD,并將AD繞點(diǎn)A逆時針旋轉(zhuǎn)60°至AE,連接EF,則EF的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類比探究:
(1)如圖1,等邊△ABC內(nèi)有一點(diǎn)P,若AP=8,BP=15,CP=17,求∠APB的大;(提示:將△ABP繞頂點(diǎn)A旋轉(zhuǎn)到△ACP′處)
(2)如圖2,在△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點(diǎn),且∠EAF=45°.求證:EF2=BE2+FC2;
(3)如圖3,在△ABC中,∠C=90°,∠ABC=30°,點(diǎn)O為△ABC內(nèi)一點(diǎn),連接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,若AC=1,求OA+OB+OC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,點(diǎn)A表示小明家,點(diǎn)B表示學(xué)校.小明媽媽騎車帶著小明去學(xué)校,到達(dá)C處時發(fā)現(xiàn)數(shù)學(xué)書沒帶,于是媽媽立即騎車原路回家拿書后再追趕小明,同時小明步行去學(xué)校,到達(dá)學(xué)校后等待媽媽.假設(shè)拿書時間忽略不計(jì),小明和媽媽在整個運(yùn)動過程中分別保持勻速.媽媽從C處出發(fā)x分鐘時離C處的距離為y1米,小明離C處的距離為y2米,如圖②,折線O-D-E-F表示y1與x的函數(shù)圖像;折線O-G-F表示y2與x的函數(shù)圖像.
(1)小明的速度為 m/min,圖②中a的值為 .
(2)設(shè)媽媽從C處出發(fā)x分鐘時媽媽與小明之間的距離為y米.當(dāng)12≤x≤30時,求出y與x的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】齊齊哈爾市教育局想知道某校學(xué)生對扎龍自然保護(hù)區(qū)的了解程度,在該校隨機(jī)抽取了部分學(xué)生進(jìn)行問卷,問卷有以下四個選項(xiàng):A.十分了解;B.了解較多:C.了解較少:D.不了解(要求:每名被調(diào)查的學(xué)生必選且只能選擇一項(xiàng)).現(xiàn)將調(diào)查的結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:
(1)本次被抽取的學(xué)生共有_______名;
(2)請補(bǔ)全條形圖;
(3)扇形圖中的選項(xiàng)“C.了解較少”部分所占扇形的圓心角的大小為_______°;
(4)若該校共有名學(xué)生,請你根據(jù)上述調(diào)查結(jié)果估計(jì)該校對于扎龍自然保護(hù)區(qū)“十分了解”和“了解較多”的學(xué)生共有多少名?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com