【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(﹣2,0),B(﹣8,0),C(﹣4,4).
(1)求這個(gè)拋物線的表達(dá)式;
(2)如圖2,一把寬為2的直尺的右邊緣靠在直線x=﹣4上,當(dāng)直尺向左平移過程中刻度線0始終在x軸上,直尺的右邊邊緣與拋物線和直線BC分別交于G、D點(diǎn),直尺的左邊邊緣與拋物線和直線BC分別交于F、E點(diǎn),當(dāng)圖中四邊形DEFG是平行四邊形時(shí),此時(shí)直尺左邊邊緣與直線BC的交點(diǎn)E的刻度是多少?
(3)如圖3,在直線x=﹣4上找一點(diǎn)K,使得∠ACP+∠AKC=∠ABC(直線x=﹣4與x軸交于P點(diǎn)),請(qǐng)直接寫出K點(diǎn)的坐標(biāo).
【答案】(1)y=x2-5x-8,
(2)E(-7,1)
(3)K(-4,6)或(-4,-6).
【解析】
(1)將A(-2,0),B(-8,0)代入函數(shù)解析式即可求解,
(2)根據(jù)圖像性質(zhì)求出直線BC的解析式為y=x+8,設(shè)D(a,a+8),再表示出G(a,a2-5a-8),E(a-2,a+6), F(a-2,a2-3a),根據(jù)DG=EF即可解題,
(3)根據(jù)網(wǎng)格點(diǎn)特征,即可求出K的坐標(biāo).
解:(1)將點(diǎn)A(-2,0),B(-8,0)代入y=x2+bx+c中得:b=-5,c=-8,
∴拋物線的解析式是y=x2-5x-8,
(2)如下圖,
∵A(-2,0),B(-8,0),C(-4,4),
∴直線BC的解析式為y=x+8,
根據(jù)題意可知∠ABC=45°,
∴設(shè)D(a,a+8),則G(a,a2-5a-8),
E(a-2,a+6),則F(a-2,a2-3a),
∵四邊形ABCD是平行四邊形,
∴DG=EF即a2-5a-8-(a+8)=a2-3a-(a+6),
解得:a=-5,
∴E(-7,1)
(3)由題可知∠ABC=45°,即在直線x=-4上找一點(diǎn)K,使得∠ACP+∠AKC=45°,
根據(jù)網(wǎng)格的特征即可找到點(diǎn)K(-4,6)或(-4,-6).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將半徑為4,圓心角為90°的扇形BAC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)60°,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)D、E且點(diǎn)D剛好在上,則陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校體育組為了解全校學(xué)生“最喜歡的一項(xiàng)球類項(xiàng)目”,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的不完整的統(tǒng)計(jì)圖:
請(qǐng)你根據(jù)統(tǒng)計(jì)圖回答下列問題:
(1)喜歡乒乓球的學(xué)生所占的百分比是多少?并請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)請(qǐng)你估計(jì)全校500名學(xué)生中最喜歡“排球”項(xiàng)目的有多少名?
(3)在扇形統(tǒng)計(jì)圖中,“籃球”部分所對(duì)應(yīng)的圓心角是多少度?
(4)籃球教練在制定訓(xùn)練計(jì)劃前,將從最喜歡籃球項(xiàng)目的甲、乙、丙、丁四名同學(xué)中任選兩人進(jìn)行個(gè)別座談,請(qǐng)用列表法或樹狀圖法求抽取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AB=8,點(diǎn)P在邊CD上,tan∠PBC=,點(diǎn)Q是在射線BP上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Q作AB的平行線交射線AD于點(diǎn)M,點(diǎn)R在射線AD上,使RQ始終與直線BP垂直.
(1)如圖1,當(dāng)點(diǎn)R與點(diǎn)D重合時(shí),求PQ的長(zhǎng);
(2)如圖2,試探索: 的比值是否隨點(diǎn)Q的運(yùn)動(dòng)而發(fā)生變化?若有變化,請(qǐng)說明你的理由;若沒有變化,請(qǐng)求出它的比值;
(3)如圖3,若點(diǎn)Q在線段BP上,設(shè)PQ=x,RM=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等邊三角形ABC中,BC=8cm,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D時(shí),求證:四邊形AFCE是平行四邊形;
(2)填空:①當(dāng)t為 s時(shí),四邊形ACFE是菱形;②當(dāng)t為 s時(shí),△ACE的面積是△ACF的面積的2倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了推進(jìn)球類運(yùn)動(dòng)的發(fā)展,某校組織校內(nèi)球類運(yùn)動(dòng)會(huì),分籃球、足球、排球、羽毛球、乒乓球五項(xiàng),要求每位學(xué)生必須參加一項(xiàng)并且只能參加一項(xiàng),某班有一名學(xué)生根據(jù)自己了解的班內(nèi)情況繪制了如圖所示的不完整統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖表中提供的信息,解答下列問題:
(1)圖表中m=________,n=________;
(2)若該校學(xué)生共有1000人,則該校參加羽毛球活動(dòng)的人數(shù)約為________人;
(3)該班參加乒乓球活動(dòng)的4位同學(xué)中,有3位男同學(xué)(分別用A,B,C表示)和1位女同學(xué)(用D表示),現(xiàn)準(zhǔn)備從中選出兩名同學(xué)參加雙打比賽,用樹狀圖或列表法求出恰好選出一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,⊙O過AC的中點(diǎn)D,DE⊥BC于點(diǎn)E.
(1)求證:DE為⊙O的切線;
(2)若DE=2,tanC=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠ABC=90°,∠C=30°,AC 的垂直平分線交 BC 于點(diǎn) D,交AC 于點(diǎn) E.
(1)判斷 BE 與△DCE 的外接圓⊙O 的位置關(guān)系,并說明理由;
(2)若 BE=,BD=1,求△DCE 的外接圓⊙O 的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+x﹣1與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,其頂點(diǎn)為D.將拋物線位于直線l:y=t(t<)上方的部分沿直線l向下翻折,拋物線剩余部分與翻折后所得圖形組成一個(gè)“M”形的新圖象.
(1)點(diǎn)A,B,D的坐標(biāo)分別為 , , ;
(2)如圖①,拋物線翻折后,點(diǎn)D落在點(diǎn)E處.當(dāng)點(diǎn)E在△ABC內(nèi)(含邊界)時(shí),求t的取值范圍;
(3)如圖②,當(dāng)t=0時(shí),若Q是“M”形新圖象上一動(dòng)點(diǎn),是否存在以CQ為直徑的圓與x軸相切于點(diǎn)P?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/28/2213337932849152/2214008649842688/STEM/890e59b444e5404588b8511540e03e41.png]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com