【題目】已知,H為射線OA上一定點(diǎn),,P為射線OB上一點(diǎn),M為線段OH上一動點(diǎn),連接PM,滿足為鈍角,以點(diǎn)P為中心,將線段PM順時(shí)針旋轉(zhuǎn),得到線段PN,連接ON.
(1)依題意補(bǔ)全圖1;
(2)求證:;
(3)點(diǎn)M關(guān)于點(diǎn)H的對稱點(diǎn)為Q,連接QP.寫出一個(gè)OP的值,使得對于任意的點(diǎn)M總有ON=QP,并證明.
【答案】(1)如圖所示見解析;(2)見解析;(3)OP=2.證明見解析.
【解析】
(1)根據(jù)題意畫出圖形即可.
(2)由旋轉(zhuǎn)可得∠MPN=150°,故∠OPN=150°-∠OPM;由∠AOB=30°和三角形內(nèi)角和180°可得∠OMP=180°-30°-∠OPM=150°-∠OPM,得證.
(3)根據(jù)題意畫出圖形,以ON=QP為已知條件反推OP的長度.由(2)的結(jié)論∠OMP=∠OPN聯(lián)想到其補(bǔ)角相等,又因?yàn)樾D(zhuǎn)有PM=PN,已具備一邊一角相等,過點(diǎn)N作NC⊥OB于點(diǎn)C,過點(diǎn)P作PD⊥OA于點(diǎn)D,即可構(gòu)造出△PDM≌△NCP,進(jìn)而得PD=NC,DM=CP.此時(shí)加上ON=QP,則易證得△OCN≌△QDP,所以OC=QD.再設(shè)DM=CP=x,所以OC=OP+PC=2+x,MH=MD+DH=x+1,由于點(diǎn)M、Q關(guān)于點(diǎn)H對稱,得出DQ=DH+HQ=1+x+1=2+x,得出OC=DQ,再利用SAS得出△OCN≌△QDP即可
解:(1)如圖1所示為所求.
(2)設(shè)∠OPM=α,
∵線段PM繞點(diǎn)P順時(shí)針旋轉(zhuǎn)150°得到線段PN
∴∠MPN=150°,PM=PN
∴∠OPN=∠MPN-∠OPM=150°-α
∵∠AOB=30°
∴∠OMP=180°-∠AOB-∠OPM=180°-30°-α=150°-α
∴∠OMP=∠OPN
(3)OP=2時(shí),總有ON=QP,證明如下:
過點(diǎn)N作NC⊥OB于點(diǎn)C,過點(diǎn)P作PD⊥OA于點(diǎn)D,如圖2
∴∠NCP=∠PDM=∠PDQ=90°
∵∠AOB=30°,OP=2
∴DH=OH-OD=1
∵∠OMP=∠OPN
∴180°-∠OMP=180°-∠OPN
即∠PMD=∠NPC
在△PDM與△NCP中
∴△PDM≌△NCP(AAS)
∴PD=NC,DM=CP
設(shè)DM=CP=x,則OC=OP+PC=2+x,MH=MD+DH=x+1
∵點(diǎn)M關(guān)于點(diǎn)H的對稱點(diǎn)為Q
∴HQ=MH=x+1
∴DQ=DH+HQ=1+x+1=2+x
∴OC=DQ
在△OCN與△QDP中
∴△OCN≌△QDP(SAS)
∴ON=QP
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC為和點(diǎn)A'.
(1)以點(diǎn)A'為頂點(diǎn)求作△A'B'C',使△A'B'C'∽△ABC,S△A'B'C'=4S△ABC;
(尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)設(shè)D、E、F分別是△ABC三邊AB、BC、AC的中點(diǎn),D'、E'、F'分別是你所作的△A'B'C'三邊A'B'、B'C'、A'C'的中點(diǎn),求證:△DEF∽△D'E'F'.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點(diǎn),增加下列條件,不能得出BE∥DF的是( )
A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】邊長為6的等邊△ABC中,點(diǎn)D、E分別在AC、BC邊上,DE∥AB,EC=2.
(1)如圖1,將△DEC沿射線EC方向平移,得到△D′E′C′,邊D′E′與AC的交點(diǎn)為M,邊C′D′與∠ACC′的角平分線交于點(diǎn)N,當(dāng)CC′多大時(shí),四邊形MCND′為菱形?并說明理由.
(2)如圖2,將△DEC繞點(diǎn)C旋轉(zhuǎn)∠α(0°<α<360°),得到△D′E′C,連接AD′、BE′.邊D′E′的中點(diǎn)為P.
①在旋轉(zhuǎn)過程中,AD′和BE′有怎樣的數(shù)量關(guān)系?并說明理由;
②連接AP,當(dāng)AP最大時(shí),求AD′的值.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面內(nèi),給定不在同一直線上的點(diǎn)A,B,C,如圖所示.點(diǎn)O到點(diǎn)A,B,C的距離均等于a(a為常數(shù)),到點(diǎn)O的距離等于a的所有點(diǎn)組成圖形G,的平分線交圖形G于點(diǎn)D,連接AD,CD.
(1)求證:AD=CD;
(2)過點(diǎn)D作DEBA,垂足為E,作DFBC,垂足為F,延長DF交圖形G于點(diǎn)M,連接CM.若AD=CM,求直線DE與圖形G的公共點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點(diǎn),與軸交于點(diǎn).
求這條拋物線的解析式;
如圖1,點(diǎn)P是第三象限內(nèi)拋物線上的一個(gè)動點(diǎn),當(dāng)四邊形的面積最大時(shí),求點(diǎn)的坐標(biāo);
如圖2,線段的垂直平分線交軸于點(diǎn),垂足為為拋物線的頂點(diǎn),在直線上是否存在一點(diǎn),使的周長最。咳舸嬖,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn)為的中點(diǎn),.將繞點(diǎn)順時(shí)針旋轉(zhuǎn)度,角的兩邊分別交直線于兩點(diǎn),設(shè)點(diǎn)間的距離為,兩點(diǎn)間的距離為.
小濤根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究下面是小濤的探究過程,請補(bǔ)充完整.
(1)列表:下表的已知數(shù)據(jù)是根據(jù)兩點(diǎn)間的距離進(jìn)行取點(diǎn)、畫圖、測量,分別得到了 與 的幾組對應(yīng)值:
0 | 0.30 | 0.50 | 1.00 | 1.50 | 2.00 | 2.50 | 3.00 | 3.50 | 3.68 | 3.81 | 3.90 | 3.93 | 4.10 | ||
2.88 | 2.81 | 2.69 | 2.67 | 2.80 | 3.15 | 3.85 | 5.24 | 6.01 | 6.71 | 7.27 | 7.44 | 8.87 |
請你通過計(jì)算,補(bǔ)全表格
(2)描點(diǎn)、連線:在平面直角坐標(biāo)系中,描出表中各組數(shù)值所對應(yīng)的點(diǎn),并畫出函數(shù)關(guān)于的圖象:
(3)探究性質(zhì):隨著自變量的不斷增大,函數(shù)的變化趨勢:
(4)解決問題:當(dāng)時(shí),的長度大約是____ (保留兩位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABE中,∠B=90°,以AB為直徑的⊙O交AE于點(diǎn)C,CE的垂直平分線FD交BE于D,連接CD.
(1)判斷CD與⊙O的位置關(guān)系,并證明;
(2)若AC·AE=12,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)絡(luò)中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B、C的坐標(biāo)分別為(-2,4)、(-2,0)、(-4,1),結(jié)合所給的平面直角坐標(biāo)系解答下列問題:
(1)畫出△ABC關(guān)于原點(diǎn)O對稱的△A1B1C1.
(2)平移△ABC,使點(diǎn)A移動到點(diǎn)A2(0,2),畫出平移后的△A2B2C2并寫出點(diǎn)B2、C2的坐標(biāo).
(3)在△ABC、△A1B1C1、△A2B2C2中,△A2B2C2與 成中心對稱,其對稱中心的坐標(biāo)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com