【題目】1)如圖1,∠A=60°,AC=1,AB=2BC的長(zhǎng);

2)如圖2,在△ABC中,試證明:BC2=AC2+AB2-2ACABcosA.

【答案】1;(2)見(jiàn)解析.

【解析】

1)取AB的中點(diǎn)D,連結(jié)CD ,易證ACD為等邊三角形,然后可得AC=AD=DC=BD=1,求出∠B=30°,∠ACB=90°,利用勾股定理可求BC

2)作H,由勾股定理得,整理可得

,然后在RtAHC中有,代入整理好的式子即可證明結(jié)論.

證明:(1)如圖1所示,取AB的中點(diǎn)D,連結(jié)CD ,

AC=1,AB=2,∴AC=AD=BD=1,

又∵∠A=60°,∴△ACD為等邊三角形,

AC=AD=DC=BD=1,ADC=60°,

∴∠B=DCB

又∵∠ADC=B+DCB,

∴∠B=30°,∠ACB=90°

;

2)如圖2所示,作H,

則由勾股定理得:,

,

又∵在RtAHC中,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)踐操作

如圖,是直角三角形,,利用直尺和圓規(guī)按下列要求作圖,并在圖中表明相應(yīng)的字母.(保留作圖痕跡,不寫作法)

1)①作的平分線,交于點(diǎn);②以為圓心,為半徑作圓.

綜合運(yùn)用

在你所作的圖中,

2與⊙的位置關(guān)系是   ;(直接寫出答案)

3)若,求⊙的半徑.

4)在(3)的條件下,求以為軸把ABC旋轉(zhuǎn)一周得到的圓錐的側(cè)面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABD△GDF都是等腰直角三角形,BDDF均為斜邊(BD<DF).

(1)如圖1,B,D,F(xiàn)在同一直線上,過(guò)FMF⊥GF于點(diǎn)F,取MF=AB,連結(jié)AMBF于點(diǎn)H,連結(jié)GA,GM.

求證:AH=HM;

請(qǐng)判斷△GAM的形狀,并給予證明;

請(qǐng)用等式表示線段AM,BD,DF的數(shù)量關(guān)系,并說(shuō)明理由.

(2)如圖2,GD⊥BD,連結(jié)BF,取BF的中點(diǎn)H,連結(jié)AH并延長(zhǎng)交DF于點(diǎn)M,請(qǐng)用等式直接寫出線段AM,BD,DF的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的圖象如圖所示,則下列結(jié)論:

其中正確的個(gè)數(shù)是( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】運(yùn)用所學(xué)知識(shí)計(jì)算三角函數(shù)值:tan22.5°=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若將拋物線ymx2xmm≠0)在直線x=﹣1與直線x1之間的部分記作圖象C,對(duì)于圖象C上任意一點(diǎn)Pab)均有﹣1≤b≤1成立,則m的取值范圍是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線yax2+ca≠0)與x軸交于點(diǎn)A和點(diǎn)B0),與y軸交于點(diǎn)C02),點(diǎn)P2t)是該拋物線上一點(diǎn).

1)求此拋物線的解析式及t的值;

2)若點(diǎn)Dy軸上一點(diǎn),線段PD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)P的對(duì)應(yīng)點(diǎn)P恰好也落在此拋物線上,求點(diǎn)D的坐標(biāo);

3)如圖2,直線lykx+b交該拋物線于M、N兩點(diǎn),且滿足MCNC,設(shè)點(diǎn)P到直線l的距離是d,求d的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+6經(jīng)過(guò)點(diǎn)A(﹣30)和點(diǎn)B2,0),直線yhh為常數(shù),且0h6)與BC交于點(diǎn)D,與y軸交于點(diǎn)E,與AC交于點(diǎn)F

1)求拋物線的解析式;

2)連接AE,求h為何值時(shí),△AEF的面積最大.

3)已知一定點(diǎn)M(﹣2,0),問(wèn):是否存在這樣的直線yh,使△BDM是等腰三角形?若存在,請(qǐng)求出h的值和點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線yx24x軸交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),C為頂點(diǎn),直線yx+m經(jīng)過(guò)點(diǎn)A,與y軸交于點(diǎn)D

1)求線段AD的長(zhǎng);

2)平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點(diǎn)為C.若新拋物線經(jīng)過(guò)點(diǎn)D,并且新拋物線的頂點(diǎn)和原拋物線的頂點(diǎn)的連線CC平行于直線AD,求新拋物線對(duì)應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案