已知一次函數(shù)圖象經(jīng)過點(-2,5)并且與y軸相交于點P,直線y=-
1
2
x+3與y軸相交于點Q,點Q恰與點P關(guān)于x軸對稱,求這個一次函數(shù)的解析式.
∵直線y=-
1
2
x+3與y軸相交于點Q,
∴Q(0,3),
∵點Q恰與點P關(guān)于x軸對稱,
∴P(0,-3),
設一次函數(shù)的解析式為:y=kx-3,將點(-2,5)代入y=kx-3,得k=-4,
∴一次函數(shù)的解析式為y=-4x-3.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

某種化肥在縣城里的甲、乙兩個生產(chǎn)資料門市部均有銷售,現(xiàn)了解到該種化肥在甲、乙兩個門市部的標價均為600元/噸,但都有一定的優(yōu)惠政策,甲門市部是第一噸按標價收費,超出部分每噸優(yōu)惠25%;乙門市部每噸優(yōu)惠20%出售.
(1)寫出甲門市部每次交易的銷售額y1(元)與銷量x(噸)之間的函數(shù)關(guān)系式及乙門市部每次交易的銷售額y2(元)與銷量x(噸)之間的函數(shù)關(guān)系式;
(2)種糧大戶張某想一次購買此種化肥4噸,李某想一次購買此種化肥8噸,他們到哪個門市部購買省錢,請給他們分別提出合理建議.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一次函數(shù)的圖象經(jīng)過點(3,6)與點(
1
2
,-
1
2
),求這個函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,一次函數(shù)y=-
3
4
x+3的圖象分別與x軸、y軸交于點A、B,以線段AB為邊在第一象限內(nèi)作等腰Rt△ABC,∠BAC=90°.則過B、C兩點直線的解析式為( 。
A.y=
1
7
x+3
B.y=
1
5
x+3
C.y=
1
4
x+3
D.y=
1
3
x+3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,一次函數(shù)的圖象經(jīng)過A,B兩點,則這個一次函數(shù)的解析式是( 。
A.y=
3
2
x-2
B.y=
1
2
x-2
C.y=
1
2
x+2
D.y=
3
2
x+2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

為了迎接“十•一”小長假的購物高峰.某運動品牌專賣店準備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表:
運動鞋
價格
進價(元/雙)mm-20
售價(元/雙)240160
已知:用3000元購進甲種運動鞋的數(shù)量與用2400元購進乙種運動鞋的數(shù)量相同.
(1)求m的值;
(2)要使購進的甲、乙兩種運動鞋共200雙的總利潤(利潤=售價-進價)不少于21700元,且不超過22300元,問該專賣店有幾種進貨方案?
(3)在(2)的條件下,專賣店準備對甲種運動鞋進行優(yōu)惠促銷活動,決定對甲種運動鞋每雙優(yōu)惠a(50<a<70)元出售,乙種運動鞋價格不變.那么該專賣店要獲得最大利潤應如何進貨?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某市采用價格調(diào)控的手段達到節(jié)約用水的目的,制定如下用水收費標準:每戶每月用水不超過6m3,水費按a元/m3收費;若超過
6m3,6m3以內(nèi)的仍按a元/m3收費,超過6m3的部分以b元/m3收費.某戶居民5、6月份用水量和水費如下表:
月份用水量(m3水費(元)
557.5
6927
設該用戶每月用水量為xm3,應交水費y元.
(1)求出a,b的值;
(2)寫出用水量不超過6m3和超過6m3時,y與x之間的函數(shù)關(guān)系式;
(3)若該用戶7月份用水量為8m3,他應交多少元水費?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某校為實施國家“營養(yǎng)早餐”工程,食堂用甲、乙兩種原料配制成某種營養(yǎng)食品,已知這兩種原料的維生素C含量及購買這兩種原料的價格如下表:
原料
維生素C及價格
甲種原料乙種原料
維生素C(單位/千克)600400
原料價格(元/千克)95
現(xiàn)要配制這種營養(yǎng)食品20千克,要求每千克至少含有480單位的維生素C.設購買甲種原料x千克.
(1)至少需要購買甲種原料多少千克?
(2)設食堂用于購買這兩種原料的總費用為y元,求y與x的函數(shù)關(guān)系式.并說明購買甲種原料多少千克時,總費用最少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線l1的解析表達式為:y=-3x+3,且l1與x軸交于點D,直線l2經(jīng)過點A,B,直線l1,l2交于點C.
(1)求直線l2的函數(shù)關(guān)系式;
(2)求△ADC的面積;
(3)若點H為坐標平面內(nèi)任意一點,在坐標平面內(nèi)是否存在這樣的點H,使以A、D、C、H為頂點的四邊形是平行四邊形?若存在,請直接寫出點H的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案