【題目】如圖,在△ABC中,BD平分∠ABC,
(1)按如下步驟作圖:(保留作圖痕跡)
第一步,分別以點B、D為圓心,以大于BD的長為半徑在BD兩側作弧,交于兩點M、N;
第二步,連接MN分別交AB,BC于點E、F;
第三步,連接DE,DF.
(2)求證:四邊形BEDF是菱形;
(3)若AD=6,BF=4,CD=3,求AE的長.
【答案】(1)見解析;(2)見解析;(3)8
【解析】
(1)根據(jù)題意作出圖形即可;
(2)利用基本作圖方法得出MN是線段BD的垂直平分線,進而得出DE∥BC,同理可得:DF∥BE,進而得出答案;
(3)利用菱形的性質得出BE=DE=DF=BF,再利用平行線分線段成比例定理得出答案.
(1)如右圖所示;
(2)證明:∵根據(jù)(1)作法可知:MN是線段BD的垂直平分線,
∴BE=DE,BF=DF
∴∠EBD=∠EDB
∵BD平分∠ABC,
∴∠EBD=∠FBD
∴∠EDB=∠FBD
∴DE∥BC
同理得DF∥AB
∴四邊形BEDF是平行四邊形
又∵BE=DE
∴四邊形BEDF是菱形;
(3)∵四邊形BEDF是菱形,
∴BE=DE=BF=DF=4,
∵DE∥BC,
∴ ,
∵AD=6,BF=4,CD=3,
∴,
解得:AE=8.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一張矩形紙片,長15cm,寬9cm,在它的四角各剪去一個同樣的小正方形,然折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是48cm2,求剪去的小正方形的邊長.設剪去的小正方形邊長是xcm,根據(jù)題意可列方程為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種流感病毒,有一人患了這種流感,在每輪傳染中一人將平均傳給x人:
(1)第一輪后患病的人數(shù)為 ;(用含x的代數(shù)式表示)
(2)在進入第二輪傳染之前,有兩位患者被及時隔離并治愈,問第二輪傳染后總共是否會有21人患病的情況發(fā)生,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰直角三角形ABC的直角邊AB的長為,將△ABC繞點A逆時針旋轉15°后得到△AB′C′,AC與B′C′相交于點D,則圖中陰影△ADC′的面積等于( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,DE∥FG∥BC,且AD:DF:FB=1:2:3,則S△ADE:S四邊形DFGE:S四邊形FBCG等于( 。
A.1:9:36B.1:4:9C.1:8:27D.1:8:36
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;
(2)分別以點C,D為圓心,CD長為半徑作弧,交于點M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結論中錯誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學習小組在研究函數(shù)y=x3﹣2x的圖象與性質時,已列表、描點并畫出了圖象的一部分.
x | … | ﹣4 | ﹣3.5 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 3.5 | 4 | … |
y | … | ﹣ | ﹣ | 0 | ﹣ | ﹣ | ﹣ | … |
(1)請補全函數(shù)圖象;
(2)方程x3﹣2x=﹣2實數(shù)根的個數(shù)為 ;
(3)觀察圖象,寫出該函數(shù)的兩條性質.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司研發(fā)了一款成本為50元的新型玩具,投放市場進行試銷售.其銷售單價不低于成本,按照物價部門規(guī)定,銷售利潤率不高于90%,市場調研發(fā)現(xiàn),在一段時間內,每天銷售數(shù)量y(個)與銷售單價x(元)符合一次函數(shù)關系,如圖所示:
(1)根據(jù)圖象,直接寫出y與x的函數(shù)關系式;
(2)該公司要想每天獲得3000元的銷售利潤,銷售單價應定為多少元
(3)銷售單價為多少元時,每天獲得的利潤最大,最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com