已知:▱ABCD中,E是CD的中點,AE的延長線與BC的延長線相交于點F.求證:BC=CF.
【考點】平行四邊形的性質(zhì);全等三角形的判定與性質(zhì).
【專題】證明題.
【分析】先證明△ADE≌△FCE,得出AD=CF,再根據(jù)平行四邊形的性質(zhì)可知AD=BC,繼而即可得出結(jié)論.
【解答】證明:如圖所示
∵四邊形ABCD為平行四邊形,
∵AD∥BC,
∴∠ADE=∠FCE,
∵E是CD的中點,
∴DE=CE,
在△ADE和△FCE中,,
∴△ADE≌△FCE(ASA),
∴AD=CF,
又∵AD=BC,
∴BC=CF.
【點評】本題考查平行四邊形的性質(zhì)及全等三角形的判定與性質(zhì);熟練掌握平行四邊形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
如圖,正方形ABCD和正方形AEFG有一個公共點A,點G、E分別在線段AD、AB上.
(1)連接DF、BF,若將正方形AEFG繞點A按順時針方向旋轉(zhuǎn),判斷命題“在旋轉(zhuǎn)的過程中,線段DF與BF的長始終相等”是否正確?若正確,請證明;若不正確,請舉例說明;
(2)若將正方形AEFG繞點A按順時針方向旋轉(zhuǎn),連接DG,在旋轉(zhuǎn)過程中,你能否找到一條線段的長與線段DG的長始終相等?并以圖為例說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知函數(shù)y=﹣x+4的圖象與函數(shù)的圖象在同一坐標(biāo)系內(nèi).函數(shù)y=﹣x+4的圖象如圖1與坐標(biāo)軸交于A、B兩點,點M(2,m)是直線AB上一點,點N與點M關(guān)于y軸對稱,線段MN交y軸于點C.
(1)m= ,S△AOB= ;
(2)如果線段MN被反比例函數(shù)的圖象分成兩部分,并且這兩部分長度的比為1:3,求k的值;
(3)如圖2,若反比例函數(shù)圖象經(jīng)過點N,此時反比例函數(shù)上存在兩個點E(x1,y1)、F(x2,y2)關(guān)于原點對稱且到直線MN的距離之比為1:3,若x1<x2請直接寫出這兩點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,小聰在作線段AB的垂直平分線時,他是這樣操作的:分別以A和B為圓心,大于AB的長為半徑畫弧,兩弧相交于C、D,則直線CD即為所求.根據(jù)他的作圖方法可知四邊形ADBC一定是( 。
A.矩形 B.菱形 C.正方形 D.等腰梯形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知二次函數(shù)y=ax2+x+c的圖象與y軸交于點A(0,4),與x軸交于點B、C,點C坐標(biāo)為(8,0),連接AB、AC.
(1)請直接寫出二次函數(shù)y=ax2+x+c的表達(dá)式;
(2)判斷△ABC的形狀,并說明理由;
(3)若點N在x軸上運動,當(dāng)以點A、N、C為頂點的三角形是等腰三角形時,請直接寫出此時點N的坐標(biāo);
(4)若點N在線段BC上運動(不與點B、C重合),過點N作NM∥AC,交AB于點M,當(dāng)△AMN面積最大時,求此時點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
陽光通過窗口AB照射到室內(nèi),在地面上留下2.7米的亮區(qū)DE(如圖所示),已知亮區(qū)到窗口下的墻角的距離EC=8.7米,窗口高AB=1.8米,則窗口底邊離地面的高BC為( 。
A.4米 B.3.8米 C.3.6米 D.3.4米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com