26、如圖,平移三角形ABC,使點(diǎn)A移動(dòng)到點(diǎn)A′,畫出平移后的三角形A′B′C′.
分析:連接AA′,可得C、A、A′在一條直線上,在這條直線上截取CC′=AA′,作BB′∥AA′且=AA′,順次連接得到的三個(gè)點(diǎn)可得所求三角形.
解答:答:如圖所示:
點(diǎn)評(píng):考查圖形的平移變換;用到的知識(shí)點(diǎn)為:圖形的平移,看關(guān)鍵點(diǎn)的平移即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三角形ABC中,AC=BC,若將△ABC沿BC方向向右平移BC長(zhǎng)的距離,得到△CEF,連接AE.
(1)試猜想,AE與CF有何位置上的關(guān)系?并對(duì)你的猜想給予證明;
(2)若BC=10,tan∠ACB=
34
時(shí),求AB的長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

24、閱讀材料,并回答下列問(wèn)題:
如圖1,以AB為軸,把△ABC翻折180°,可以變換到△ABD的位置;如圖2,把△ABC沿射線AC平移,可以變換到△DEF的位置.像這樣,其中的一個(gè)三角形是另一個(gè)三角形經(jīng)翻折、平移等方法變換成的,這種只改變位置,不改變形狀大小的圖形變換,叫三角形的全等變換.
(1)請(qǐng)你寫出一種全等變換的方法(除翻折、平移外).
旋轉(zhuǎn)
;
(2)如圖2,△ABC沿射線AC平移到△DEF,若平移的距離為2,且AC=3,則DC=
1
;
(3)如圖3,D、E分別是△ABC的邊AB、AC上的點(diǎn),把△ADE沿DE翻折,當(dāng)點(diǎn)A落在四邊形BCED內(nèi)部變?yōu)镕時(shí),則∠F和∠BDF+∠CEF之間的數(shù)量關(guān)系始終保持不變,請(qǐng)你直接寫出它們之間的關(guān)系式:
∠BDF+∠CEF=2∠F

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

李老師從“淋浴龍頭”受到啟發(fā).編了一個(gè)題目:
在數(shù)軸上截取從0到3的對(duì)應(yīng)線段AB,實(shí)數(shù)m對(duì)應(yīng)AB上的點(diǎn)M,如圖1;將AB折成正三角形,使點(diǎn)A,B重合于點(diǎn)P,如圖2;建立平面直角坐標(biāo)系,平移此三角形,使它關(guān)于y軸對(duì)稱,且點(diǎn)P的坐標(biāo)為(0,2),PM與x軸交于點(diǎn)N(n,0),如圖3.當(dāng)m=
3
時(shí),求n的值.
精英家教網(wǎng)
你解答這個(gè)題目得到的n值為( 。
A、4-2
3
B、2
3
-4
C、-
2
3
3
D、
2
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•鞍山一模)李老師從“淋浴龍頭”受到啟發(fā),編了一個(gè)題目:在數(shù)軸上截取從0到3的對(duì)應(yīng)線段AB,實(shí)數(shù)m對(duì)應(yīng)AB上的點(diǎn)M,如圖1;將AB折成正三角形,使點(diǎn)A,B重合于點(diǎn)P,如圖2;建立平面直角坐標(biāo)系,平移此三角形,使它關(guān)于y軸對(duì)稱,且點(diǎn)P的坐標(biāo)為(0,2),PM與x軸交于點(diǎn)N(n,0),如圖3.當(dāng)m=
3
時(shí),n=
4-2
3
4-2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2012•房山區(qū)一模)閱讀下面材料:
如圖1,已知線段AB、CD相交于點(diǎn)O,且AB=CD,請(qǐng)你利用所學(xué)知識(shí)把線段AB、CD轉(zhuǎn)移到同一三角形中.
小強(qiáng)同學(xué)利用平移知識(shí)解決了此問(wèn)題,具體做法:
如圖2,延長(zhǎng)OD至點(diǎn)E,使DE=CO,延長(zhǎng)OA至點(diǎn)F,使AF=OB,連接EF,則△OEF為所求的三角形.
請(qǐng)你仔細(xì)體會(huì)小強(qiáng)的做法,探究并解答下列問(wèn)題:
如圖3,長(zhǎng)為2的三條線段AA′,BB′,CC′交于一點(diǎn)O,并且∠B′OA=∠C′OB=∠A′OC=60°;
(1)請(qǐng)你把三條線段AA′,BB′,CC′轉(zhuǎn)移到同一三角形中.(簡(jiǎn)要敘述畫法)
(2)連接AB′、BC′、CA′,如圖4,設(shè)△AB′O、△BC′O、△CA′O的面積分別為S1、S2、S3,則S1+S2+S3
3
(填“>”或“<”或“=”).

查看答案和解析>>

同步練習(xí)冊(cè)答案