【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A()和B(4,6),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.
(1)求拋物線的解析式;
(2)當(dāng)C為拋物線頂點的時候,求的面積.
(3)是否存在質(zhì)疑的點P,使的面積有最大值,若存在,求出這個最大值,若不存在,請說明理由.
【答案】(1);(2)(3)存在,(m為點P的橫坐標(biāo))當(dāng)m=時,
【解析】
(1)把A、B坐標(biāo)代入二次函數(shù)解析式,求出a、b,即可求得解析式;
(2)根據(jù)第(1)問求出的函數(shù)解析式可得出C點的坐標(biāo),根據(jù)C、P兩點橫坐標(biāo)一樣可得出P點的坐標(biāo),將△BCE的面積分成△PCE與△PCB,以PC為底,即可求出△BCE的面積.
(3)設(shè)動點P的坐標(biāo)為(m,m+2),點C的坐標(biāo)為(m,),表示出PC的長度,根據(jù),構(gòu)造二次函數(shù),然后求出二次函數(shù)的最大值,并求出此時m的值即可.
解:(1)∵A()和B(4,6)在拋物線y=ax2+bx+6上,
∴
解得:,
∴拋物線的解析式;
(2)∵二次函數(shù)解析式為,
∴頂點C坐標(biāo)為,
∵PC⊥x,點P在直線y=x+2上,
∴點P的坐標(biāo)為,
∴PC=6;
∵點E為直線y=x+2與x軸的交點,
∴點E的坐標(biāo)為
∵ =
∴.
(3)存在.
設(shè)動點P的坐標(biāo)是,點C的坐標(biāo)為,
∵
∴
∵,
∴函數(shù)開口向下,有最大值
∴當(dāng)時,△ABC的面積有最大值為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】年月日貴州環(huán)保行活動“美麗烏江 拒絕污染”正式開啟,烏江支流由于長期采磷及磷化工發(fā)展造成了總磷污染.當(dāng)?shù)卣岢鑫鍡l整改措施,力求在天以內(nèi)使總磷含量達標(biāo)(即總磷濃度低于).整改過程中,總磷濃度與時間(天)的變化規(guī)律如圖所示,其中線段表示前天的變化規(guī)律,且線段所在直線的表達式為:,從第天起,該支流總磷濃度與時間成反比例關(guān)系.
(1)求整改全過程中總磷濃度與時間的函數(shù)表達式;
(2)該支流中總磷的濃度能否在天以內(nèi)達標(biāo)?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,點E是AB 的中點,連接CE交⊙O于點F,連接AF并延長交BC于點H.
(1)若連接AO,試判斷四邊形AECO的形狀,并說明理由;
(2)求證:AH是⊙O的切線;
(3)若AB=6,CH=2,則AH的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與y=﹣與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,連接AC、BC,點D是線段AB上一點,且AD=CA,連接CD.
(1)如圖2,點P是直線BC上方拋物線上的一動點,在線段BC上有一動點Q,連接PC、PD、PQ,當(dāng)△PCD面積最大時,求PQ+CQ的最小值;
(2)將過點D的直線繞點D旋轉(zhuǎn),設(shè)旋轉(zhuǎn)中的直線l分別與直線AC、直線CO交于點M、N,當(dāng)△CMN為等腰三角形時,直接寫出CM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進價為40元的柑橘,物價部門規(guī)定每箱售價不得高于55元;市場調(diào)查發(fā)現(xiàn),若每箱以45元的價格銷售,平均每天銷售105箱;每箱以50元的價格銷售,平均每天銷售90箱.假定每天銷售量y(箱)與銷售價x(元/箱)之間滿足一次函數(shù)關(guān)系式.
(1)求平均每天銷售量y(箱)與銷售價x(元/箱)之間的函數(shù)關(guān)系式;
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價x(元/箱)之間的函數(shù)關(guān)系式;
(3)當(dāng)每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點F,則∠BFC為( 。
A. 75°B. 60°C. 55°D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=2,點E是BC邊的中點,連接AE,△AB′E和△ABE關(guān)于AE所在直線對稱,若△B′CD是直角三角形,則BC邊的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖AB、CD是⊙O的弦,AB⊥CD,
(1)若∠ADC=20°,求∠BOD的度數(shù);
(2)若∠ADC=α,求∠AOC+∠BOD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com