【題目】如圖1,在長(zhǎng)方形ABCD中,AB=12cm,BC=10cm,點(diǎn)P從A出發(fā),沿A→B→C→D的路線運(yùn)動(dòng),到D停止;點(diǎn)Q從D點(diǎn)出發(fā),沿D→C→B→A路線運(yùn)動(dòng),到A點(diǎn)停止.若P、Q兩點(diǎn)同時(shí)出發(fā),速度分別為每秒lcm、2cm,a秒時(shí)P、Q兩點(diǎn)同時(shí)改變速度,分別變?yōu)槊棵?/span>2cm、cm(P、Q兩點(diǎn)速度改變后一直保持此速度,直到停止),如圖2是△APD的面積s(cm2)和運(yùn)動(dòng)時(shí)間x(秒)的圖象.
(1)求出a值;
(2)設(shè)點(diǎn)P已行的路程為y1(cm),點(diǎn)Q還剩的路程為y2(cm),請(qǐng)分別求出改變速度后,y1、y2和運(yùn)動(dòng)時(shí)間x(秒)的關(guān)系式;
(3)求P、Q兩點(diǎn)都在BC邊上,x為何值時(shí)P、Q兩點(diǎn)相距3cm?
【答案】(1)6;(2)10或;
【解析】
(1)根據(jù)圖象變化確定a秒時(shí),P點(diǎn)位置,利用面積求a;
(2)P、Q兩點(diǎn)的函數(shù)關(guān)系式都是在運(yùn)動(dòng)6秒的基礎(chǔ)上得到的,因此注意在總時(shí)間內(nèi)減去6秒;
(3)以(2)為基礎(chǔ)可知,兩個(gè)點(diǎn)相距3cm分為相遇前相距或相遇后相距,因此由(2)可列方程.
(1)由圖象可知,當(dāng)點(diǎn)P在BC上運(yùn)動(dòng)時(shí),△APD的面積保持不變,則a秒時(shí),點(diǎn)P在AB上.
,
∴AP=6,
則a=6;
(2)由(1)6秒后點(diǎn)P變速,則點(diǎn)P已行的路程為y1=6+2(x﹣6)=2x﹣6,
∵Q點(diǎn)路程總長(zhǎng)為34cm,第6秒時(shí)已經(jīng)走12cm,
故點(diǎn)Q還剩的路程為y2=34﹣12﹣;
(3)當(dāng)P、Q兩點(diǎn)相遇前相距3cm時(shí),
﹣(2x﹣6)=3,解得x=10,
當(dāng)P、Q兩點(diǎn)相遇后相距3cm時(shí),
(2x﹣6)﹣()=3,解得x=,
∴當(dāng)x=10或時(shí),P、Q兩點(diǎn)相距3cm
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A的坐標(biāo)為(﹣1,1),點(diǎn)B在x軸正半軸上,點(diǎn)D在第三象限的雙曲線y=上,過(guò)點(diǎn)C作CE∥x軸交雙曲線于點(diǎn)E,則CE的長(zhǎng)為( )
A. B. C. 3.5D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下面的解題過(guò)程的橫線上填空,并在括號(hào)內(nèi)注明理由。
如圖,已知∠A=∠F,∠C=∠D,試說(shuō)明BD∥CE.
解:∵∠A=∠F(已知)
∴DF∥AC(_____________________)
∴∠D=_____(______________________)
∵∠C=∠D(已知)
∴∠1=_____(___________________)
∴BD∥CE(_______________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)際問(wèn)題
某批發(fā)商以元/ 的成本價(jià)購(gòu)入了某產(chǎn)品,據(jù)市場(chǎng)預(yù)測(cè),該產(chǎn)品的銷(xiāo)售價(jià)(元/ )與保存時(shí)間(天)的函數(shù)關(guān)系為,但保存這批產(chǎn)品平均每天將損耗.另外,批發(fā)商每天保存該批產(chǎn)品的費(fèi)用為元.已知該產(chǎn)品每天的銷(xiāo)量不超過(guò),若批發(fā)商希望通過(guò)這批產(chǎn)品賣(mài)出獲利元,則批發(fā)商應(yīng)在保存該產(chǎn)品多少天時(shí)一次性賣(mài)出?
小明的思路及解答
本題的相等關(guān)系是:
銷(xiāo)售價(jià)銷(xiāo)量成本價(jià)銷(xiāo)量保存費(fèi)用獲利.
解:設(shè)批發(fā)商應(yīng)在保存該產(chǎn)品天時(shí)一次性賣(mài)出可獲利元.
根據(jù)上面的相等關(guān)系,
得.
解這個(gè)方程,得, .
當(dāng)時(shí), (不合題意,舍去),
當(dāng)時(shí), .
答:批發(fā)商應(yīng)在保存該產(chǎn)品天時(shí)一次性賣(mài)出可獲利元.
數(shù)學(xué)老師的批改
數(shù)學(xué)老師在小明的解答中畫(huà)了一條橫線,并打了一個(gè)“”.
你的觀點(diǎn)及做法
()請(qǐng)指出小明錯(cuò)誤的原因.
()重新給出正確的解答過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中, , ,點(diǎn)為的中點(diǎn),點(diǎn)分別為邊上的動(dòng)點(diǎn).
(1)若點(diǎn)分別為的中點(diǎn),求線段的長(zhǎng);
(2)若,
①求證: ∽;
②試問(wèn)與相似嗎?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y1=的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,4)和點(diǎn)B(m,﹣2),
(1)求這兩個(gè)函數(shù)的關(guān)系式;
(2)觀察圖象,寫(xiě)出使得y1>y2成立的自變量x的取值范圍;
(3)如果點(diǎn)C與點(diǎn)A關(guān)于x軸對(duì)稱(chēng),求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD沿對(duì)角線BD折疊,點(diǎn)C落在點(diǎn)E處,BE交AD于點(diǎn)F,已知∠BDC=62°,則∠DFE的度數(shù)為( 。
A. 31° B. 28° C. 62° D. 56°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,分別探索下列四個(gè)圖形中∠P、∠A、∠C,發(fā)現(xiàn)有如下三種數(shù)量關(guān)系:∠A+∠C =∠P ;∠P+∠A =∠C ;∠P+∠C =∠A,請(qǐng)你選擇其中的兩種數(shù)量關(guān)系說(shuō)明理由.
(1)我選擇的是圖 ,數(shù)量關(guān)系式是 .
理由:
(2) 我選擇的是圖 ,數(shù)量關(guān)系式是 .
理由:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com