【題目】進(jìn)入冬季,空調(diào)再次迎來銷售旺季,某商場(chǎng)用元購(gòu)進(jìn)一批空調(diào),該空調(diào)供不應(yīng)求,商家又用元購(gòu)進(jìn)第二批這種空調(diào),所購(gòu)數(shù)量比第一批購(gòu)進(jìn)數(shù)量多臺(tái),但單價(jià)是第一批的倍.
(1)該商場(chǎng)購(gòu)進(jìn)第一批空調(diào)的單價(jià)多少元?
(2)若兩批空調(diào)按相同的標(biāo)價(jià)出售,春節(jié)將近,還剩下臺(tái)空調(diào)未出售,為減少庫(kù)存回籠資金,商家決定最后的臺(tái)空調(diào)按九折出售,如果兩批空調(diào)全部售完利潤(rùn)率不低于(不考慮其他因素),那么每臺(tái)空調(diào)的標(biāo)價(jià)至少多少元?
【答案】(1)該商場(chǎng)購(gòu)進(jìn)第一批空調(diào)的單價(jià)2500元;(2)每臺(tái)空調(diào)的標(biāo)價(jià)至少為4000元.
【解析】
(1)設(shè)購(gòu)進(jìn)第一批空調(diào)的單價(jià)為元,則第二批空調(diào)的單價(jià)為元,用總價(jià)除以單價(jià)分別得到兩批購(gòu)買的數(shù)量,再根據(jù)第二批比第一批多15臺(tái)得到方程求解即可;
(2)設(shè)標(biāo)價(jià)為元,用表示出總的銷售額,然后根據(jù)利潤(rùn)率不低于列出不等式求解.
解:(1)設(shè)購(gòu)進(jìn)第一批空調(diào)的單價(jià)為元,則第二批空調(diào)的單價(jià)為元,
由題意得,
解得,
經(jīng)檢驗(yàn),是原方程的解.
答:該商場(chǎng)購(gòu)進(jìn)第一批空調(diào)的單價(jià)2500元.
(2)設(shè)每臺(tái)空調(diào)的標(biāo)價(jià)為元,
第二批空調(diào)的單價(jià)為元,
第一批空調(diào)的數(shù)量為臺(tái),
第二批空調(diào)的數(shù)量為臺(tái),
由題意得,
解得
答:每臺(tái)空調(diào)的標(biāo)價(jià)至少為4000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=8cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒cm的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),以每秒1cm的速度向C點(diǎn)運(yùn)動(dòng),設(shè)P,Q兩點(diǎn)的運(yùn)動(dòng)時(shí)間為t(0<t<8)秒.
(1)BQ= ,BP= (用含t的式子表示).
(2)當(dāng)t=2時(shí),求△PCQ的面積(提示:在一個(gè)三角形中,若兩個(gè)角相等,則角所對(duì)的邊也相等).
(3)當(dāng)PQ=PC時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+3與x軸交于A(﹣3,0)、B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,連接AC..
(1)請(qǐng)求出拋物線y=ax2+bx+3的解析式;
(2)如圖2,點(diǎn)P、點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),點(diǎn)P沿AC以每秒個(gè)單位長(zhǎng)度的速度,由點(diǎn)A向點(diǎn)C運(yùn)動(dòng);點(diǎn)Q沿AB以每秒2個(gè)單位長(zhǎng)度的速度,由點(diǎn)A向點(diǎn)B運(yùn)動(dòng);當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,連接PQ.
①求證:PQ⊥AC;
②過點(diǎn)Q作QE⊥x軸,交拋物線于點(diǎn)E,連接PE,當(dāng)PQ=PE時(shí),請(qǐng)求出t的值;
③在y軸上是否存在點(diǎn)D,使以點(diǎn)A、P、Q、D為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出D點(diǎn)坐標(biāo):若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,動(dòng)點(diǎn)E,F分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng).
(1)如圖1,當(dāng)點(diǎn)E在邊DC上自D向C移動(dòng),同時(shí)點(diǎn)F在邊CB上自C向B移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,請(qǐng)你寫出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說明理;
(2)如圖2,當(dāng)E,F分別在邊CD,BC的延長(zhǎng)線上移動(dòng)時(shí),連接AE,DF,(1)中的結(jié)論還成立嗎?(請(qǐng)你直接回答“是”或“否”,不需證明);連接AC,求△ACE為等腰三角形時(shí)CE:CD的值;
(3)如圖3,當(dāng)E,F分別在直線DC,CB上移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,由于點(diǎn)E,F的移動(dòng),使得點(diǎn)P也隨之運(yùn)動(dòng),請(qǐng)你畫出點(diǎn)P運(yùn)動(dòng)路徑的草圖.若AD=2,試求出線段CP的最大值.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,平面直角坐標(biāo)系中,A(0,4) ,B (b,0) (-4<b<0),將線段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AC,連接BC.
(1)如圖1,直接寫出C點(diǎn)的坐標(biāo): ;(用b表示)
(2)如圖2,取線段BC的中點(diǎn)D,在x軸取一點(diǎn)E使∠DEB=45°,作CF⊥x軸于點(diǎn)F.
①求證:EF=OB;
②如圖3,連接AE,作DH∥y軸交AE于點(diǎn)H,當(dāng)OE=EF時(shí),求線段DH的長(zhǎng)度.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA是⊙O的切線,A是切點(diǎn),AC是直徑,AB是弦,連接PB、PC,PC交AB于點(diǎn)E,且PA=PB.
(1)求證:PB是⊙O的切線;
(2)若∠APC=3∠BPC,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=30°,∠AOB內(nèi)有一定點(diǎn)P,且OP=10.在OA上有一點(diǎn)Q,OB上有一點(diǎn)R.若△PQR周長(zhǎng)最小,則最小周長(zhǎng)是( )
A.10 B.15 C.20 D.30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,交AD于F,F(xiàn)G∥BC,F(xiàn)H∥AC,下列結(jié)論:①AE=AF;②AF=FH;③AG=CE;④AB+FG=BC,其中正確的結(jié)論有________________.(填序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com