已知如圖,折疊長方形的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=8cm,BC=10cm,則EC=(  )
分析:要求CE的長,應(yīng)先設(shè)CE的長為x,由將△ADE折疊使點(diǎn)D恰好落在BC邊上的點(diǎn)F可得Rt△ADE≌Rt△AFE,所以AF=10cm,EF=DE=(8-x)cm;在Rt△ABF中由勾股定理得:AB2+BF2=AF2,已知AB、AF的長可求出BF的長,又CF=BC-BF=10-BF,在Rt△ECF中由勾股定理可得:EF2=CE2+CF2,即:(8-x)2=x2+(10-BF)2,將求出的BF的值代入該方程求出x的值,即求出了CE的長.
解答:解:根據(jù)折疊方式可得:△AED≌△AEF,
∴AF=AD=BC=10cm,DE=EF,
設(shè)EC=xcm,則DE=(8-x)cm.
∴EF=(8-x)cm,
在Rt△ABF中,BF=
AF2-AB2
=6cm,
∴FC=BC-BF=4cm.
在Rt△CEF中,由勾股定理得:CE2+FC2=EF2,
即:x2+42=(8-x)2
解得x=3.
∴EC的長為3cm.
故選:A.
點(diǎn)評:本題主要考查了勾股定理,折疊問題的應(yīng)用;兩次利用勾股定理得到所需線段長是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖,長方形ABCD,AB=8,BC=6,若將長方形頂點(diǎn)A、C重合折疊起來,則折痕PQ長為( 。
A、
15
2
B、7
C、8
D、
17
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:折疊長方形ABCD(四個(gè)角都是直角,對邊相等)的一邊AD,點(diǎn)D落在BC邊的F處,已知AB=8cm,BC=10cm,則EC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,折疊長方形紙片ABCD的一邊,使點(diǎn)D落在BC邊的D'處,AE是折痕.已知AB=6cm,BC=10cm,求CE的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

已知如圖,折疊長方形的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=8cm,BC=10cm,則EC=


  1. A.
    3
  2. B.
    4
  3. C.
    5
  4. D.
    6

查看答案和解析>>

同步練習(xí)冊答案