【題目】某校計(jì)劃開設(shè)4門選修課:音樂、繪畫、體育、舞蹈,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門),對調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)后,繪制了如下不完整的兩個(gè)統(tǒng)計(jì)圖.
根據(jù)以上統(tǒng)計(jì)圖提供的信息,回答下列問題:
(1)此次調(diào)查抽取的學(xué)生人數(shù)為a= 人,其中選擇“繪畫”的學(xué)生人數(shù)占抽樣人數(shù)的百分比為b= ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校有2000名學(xué)生,請估計(jì)全校選擇“繪畫”的學(xué)生大約有多少人?
【答案】(1)100 40% (2)如圖
(3)800人
【解析】
試題(1)用音樂的人數(shù)除以所占的百分比計(jì)算即可求出a,再用繪畫的人數(shù)除以總?cè)藬?shù)求出b;
(2)求出體育的人數(shù),然后補(bǔ)全統(tǒng)計(jì)圖即可;
(3)用總?cè)藬?shù)乘以“繪畫”所占的百分比計(jì)算即可得解.
試題解析:(1)a=20÷20%=100人,b=×100%=40%;
故答案為:100;40%;
(2)體育的人數(shù):100﹣20﹣40﹣10=30人,
補(bǔ)全統(tǒng)計(jì)圖如圖所示;
(3)選擇“繪畫”的學(xué)生共有2000×40%=800(人).
答:估計(jì)全校選擇“繪畫”的學(xué)生大約有800人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD//BC,AD=AB=2,∠B=120°,∠ADC=150°,現(xiàn)以對角線AC為邊向點(diǎn)D一側(cè)作等邊△ACE,則四邊形ABCE的面積=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用如圖所示矩形紙片的四個(gè)角都剪去一個(gè)邊長為的正方形(陰影部分).并制成一個(gè)長方體紙盒。
(1)用a,b,x表示紙片剩余部分的面積和紙盒的底面積;
(2)當(dāng)a=6,b=4,且剪去部分的面積等于剩余部分的面積時(shí),求正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,則下列敘述不正確的是( )
A. 點(diǎn)O不在直線AC上
B. 射線AB與射線BC是指同一條射線
C. 圖中共有5條線段
D. 直線AB與直線CA是指同一條直線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在矩形ABCD中,AD=6,DC=7,點(diǎn)H為AD上一點(diǎn),并且AH=2,點(diǎn)E為AB上一動(dòng)點(diǎn),以HE為邊長作菱形HEFG,并且使點(diǎn)G在CD邊上,連接CF
(1)如圖1,當(dāng)DG=2時(shí),求證:四邊形EFGH為正方形;
(2)如圖2,當(dāng)DG=6時(shí),求△CGF的面積;
(3)當(dāng)DG的長度為何值時(shí),△CGF的面積最小,并求出△CGF面積的最小值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】巴南區(qū)認(rèn)真落實(shí)“精準(zhǔn)扶貧”.某“建卡貧困戶”在黨和政府的關(guān)懷和幫助下投資了一個(gè)魚塘,經(jīng)過一年多的精心養(yǎng)殖,今年10月份從魚塘里捕撈了草魚和花鰱共2500千克,在市場上草魚以每千克16元的價(jià)格出售,花鰱以每千克24元的價(jià)格出售,這樣該貧困戶10月份收入52000元,
(1)今年10月份從魚塘里捕撈草魚和花鰱各多少千克?
(2)該貧困戶今年12月份再次從魚塘里捕撈.捕撈數(shù)量和銷售價(jià)格上,草魚數(shù)量比10月份減少了千克,銷售價(jià)格不變;花鰱數(shù)量比10月份減少了,銷售價(jià)格比10月份減少了,該貧困戶在10月份和12月份兩次捕撈中共收入了94040元,真正達(dá)到了脫貧致富,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示,將一個(gè)腰長為2等腰直角△BCD和直角邊長為2、寬為1的直角△CED拼在一起.現(xiàn)將△CED繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至△CE’D’,旋轉(zhuǎn)角為a.
(1)如圖(2),旋轉(zhuǎn)角a=30°時(shí),點(diǎn)D′到CD邊的距離D’A=______.求證:四邊形ACED′為矩形;
(2)如圖(1),△CED繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一周的過程中,在BC上如何取點(diǎn)G,使得GD’=E’D;并說明理由.
(3)△CED繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一周的過程中,∠CE’D=90°時(shí),直接寫出旋轉(zhuǎn)角a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是直角,點(diǎn)為垂足,是內(nèi)任意一條射線,,分別平分,下列結(jié)論:①;②;③;④與互余,其中正確的有______(只填寫正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E在BC的延長線上,且CE=BC,AE=AB,AE、DC相交于點(diǎn)O,連接DE.
(1)求證:四邊形ACED是矩形;
(2)若∠AOD=120°,AC=4,求對角線CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com